

A Generic Multi-scale Modeling Framework for Reactive Observing Systems

Focus on observing systems which are (a) *embedded* into environment, (b) include stationary and mobile sensors, and (c) react to collected observations by reconfiguring the system and adapting which observations to collect next.

Networked Aquatic Microbial Observing Systems (NAMOS)

Datasets: spatial patterns of chlorophyll and temperature and some unexpected fluctuations

Similarity Tessellations

An example problem:

 Spatially "tessellate" the buoys into sets such that within each set, all buoys observe the "same" phenomenon

What is this useful for?

- Characterizing event(s) observed by the sensor network
- Planing how to re-deploy sensing resources, or where to add redundancy
- Detecting outliers (or faulty observations/sensors)

Challenges

Challenge- gathering information

- In the absence of a priori models/ signatures, detecting "similarity" is non-trivial
- Individual sensors (buoys) may not be able to detect/characterize a phenomena
- Infer concise models empirically to reduce network traffic
- Our initial approach:
 - define similarity based on statistical models of sensed data where nodes exchange statistical models

Challenge- Adaptation

- Adapt spatial sampling density to achieve desired fidelity using available sensors
- Adapt sampling frequency at individual sensors to utilize available bandwidth efficiently

Challenge- Tessellation

- Efficient distributed algorithm to compute the tessellation
- Efficient distributed clustering of data into similarity groups

AMBROSia: Autonomous Model-Based Reactive Observing Systems

Main research thrusts:

- Model development and validation
- Algorithms and system development for measurements optimization and control
- Systems design and protocol development

> Team:

- •D. Caron (marine biology)
- L. Golubchik (systems modeling & analysis)
- •R. Govindan (network routing & sensor networks)
- D. Kempe (optimization algorithms)
- G. Sukhatme (distributed robotics & mobile sensors)

>Vision:

 AMBROSia will aid scientific research by facilitating observation, detection, and tracking of scientific phenomena that were previously only partially (or not at all) observable and/or understood.

