Dynamic Data - Driven Brain - Machine Interfaces (DDDBMIs)

José Fortes

On behalf of the DDDBMI PI team:

Renato Figueiredo, Linda Hermer-Vazquez, José Principe and Justin Sanchez

Brain Machine Interfaces (BMIs)

- Motor BMIs
 - Translate brain electrical activity into commands to external devices
 - Command BMIs or BCIs— EEG-based
 - Trajectory control BMIs based on neuronal firings/fields
- Signal processing
 - Many possible models
 - Real-time (20-200 ms)
 - Feedback and training

Kawato's model

- multiple model pairs
 - forward (planning): sensory input from motor commands
 - inverse (execution): motor commands from trajectory info
- output combines several models
 - data dependent
 - dynamic

General considerations

- Number of model pairs
 - 10s 100s for simple tasks (e.g. press lever)
 - 1000s (?) for complex tasks
- Type of models
 - Linear (filters): Wiener, NLMS, PVA, ...
 - Nonlinear (neural nets): TDNN, RMLP, RNN, NMCLM
 - State-based: Kalman filters, Bayesian classifiers, HMMs
- Complexity of models
 - O(n), O(n²), O(mn²), O(n³), ...
 - for n neurons, m models

Basic computation structure

- Online real-time (hard and soft deadlines)
- Offline recreation of experiments from data in storage

Requirements for Grid-based DDDBMIs

- resource discovery based on quality of service specifications and scheduling based on virtual machine reservations,
- 2. dynamic steering of applications to computing resources based on run-time feedback from application inputs.

