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Brain Machine Interfaces (BMIs)

Motor BMIs

Translate brain electrical activity into
commands to external devices

Command BMIs or BCls— EEG-based
Trajectory control BMIs — based on neuronal
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Kawato’s model

multiple model pairs
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General considerations

Number of model pairs
10s — 100s for simple tasks (e.g. press lever)
1000s (?) for complex tasks

Type of models
Linear (filters): Wiener, NLMS, PVA, ...
Nonlinear (neural nets): TDNN, RMLP, RNN, NMCLM

State-based: Kalman filters, Bayesian classifiers,
HMMs

Complexity of models
O(n), O(n?), O(mn?), O(n3), ...
for n neurons, m models
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Basic computation structure
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Online — real-time (hard and soft deadlines)

Offline — recreation of experiments from data
In storage

A( jl S Advanced Computing and Information Systems laboratory
BEEEE—

svan, UNIVERSITY OF

S FLORIDA



Requirements for Grid-based DDDBMIs

1. resource discovery based on quality of
service specifications and scheduling
based on virtual machine reservations,

2. dynamic steering of applications to
computing resources based on run-time
feedback from application inputs.

3) Virtual
1) Resource request; cluster
QoS specmcatlon v reservation,

instantiation
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