When DDDAS Meets Grids and HPC: A Train Wreck in the Making?

Craig C. Douglas

University of Kentucky and Yale University douglas-craig@cs.yale.edu

In cooperation with Gabrielle Allen and friends.

This work has been supported in part by NSF grants EIA-0219627, ACI-0324876, and CNS-0540178 (Kentucky),

What is DDDAS

- It is a paradigm whereby application (or simulations) and measurements become a symbiotic feedback control system.
- Dynamically incorporates additional data into an executing application and lets an application dynamically steer the measurement process.
- Capabilities promise more accurate analysis and prediction, more precise controls, and more reliable outcomes.

What Benefits from DDDAS

- Applications in business, engineering and scientific processes, analysis, and design.
- Areas in manufacturing process controls, resource management, weather and climate prediction, traffic management, systems engineering, civil engineering, geological exploration, social and behavioral modeling, cognitive measurement, and bio-sensing.

How is DDDAS Done

- DDDAS creates a rich set of new challenges for applications, algorithms, systems' software, and measurement methods.
- DDDAS research typically requires
 - strong, systematic collaborations between applications domain researchers and mathematics, statistics, and computer sciences researchers
 - researchers involved in the design and implementation of measurement methods and instruments.
- Most DDDAS projects involve multidisciplinary teams of researchers.

A Few DDDAS Samples

- Weather, climate, and ocean modeling
- Flooding, typhoons or hurricanes, thunderstorms, tornados
- Fires: wildland, forest, buildings
- Contaminants: transport (water and air), identification
- Oil/gas exploration
- Traffic flow: lights and vehicular behavior

- Terrorist attack followups
- Manufacturing and full plant management
- Brain-machine interfaces
- Medical treatment (cancer treatment)
- High energy physics device control
- Mining safety would be nice

DDDAS Impact on HPC

- Scheduling
- Networking
- Data Integrity
- Allocations
- On demand everything
 - Yes, really, we need everything right now, not later, and we do not know in advance exactly what everything means

DDDAS Impact on Scheduling

- Model-model coupling across a wide area network Grid
 - Co-scheduling of both resources and networks
 - High speed versus low latency networks are an issue
- Controlling computer (e.g., a laptop, PDA, or cell phone) not necessarily part of a cluster or supercomputer center
 - Might not always on the Internet and whose IP address changes
 - Adaptive P2P scenario: Grid + separate controller
- Immediate, dynamic on demand scheduling sometimes necessary
 - Allocation change may also need to be dynamically negotiated

DDDAS Means Run It NOW

- Fast injection of application into queues
 - Fast flushing necessary
 - Must be able to write running applications to disk very fast
 - Vendors talking about modifying kernels
- Pre-injection into queues
 - Run application and go to sleep without allocating memory
 - Use small memory per processor (think Blue Gene/L or Paragon size memory usage per processor
 - Use more processors and have small footprint per processor saves paging time in starting up

DDDAS Impact on Data and Visualization

- Data ingestion from multiple sources
 - Authentication issues
 - Discovery
 - Networks
 - Save data that cannot be processed or let it fall on the floor
- Real time visualization and analysis
 - Provisioning of high speed networks
 - Flexible scheduling
 - Radically different environments may be in use at same time (Immersive or LCD screen versus PDA/cell phone)

DDDAS Impact on Computer Environment

- Information about hardware and software environment needs to be available to applications through standard APIs
 - Adapt data structures, load balancing, and computational algorithms to architecture(s)
 - Consistent dynamically linked libraries
 - Decisions for where and when to stage executables
 - Remaining queue time to prioritize work
 - Queue wait times to prioritize locations for work
 - Ability to find available hardware resources

DDDAS Impact on Performance

- Performance information needs to be available to applications through standard APIs (eg PAPI)
 - Dynamically optimize
 - Dynamically choose parameters (e.g., frequency of analysis)
- Ability to negotiate increase/decrease of allocation (time and processor count)
 - Changing workload can be caused by
 - * Dynamic adaptive mesh refinement
 - * Changing model (character of governing equations)

DDDAS Impact on Communication

- Internal nodes
- Third party data transfers
 - Sensor data collection
 - Controlling node is
 - * Somewhere else
 - * Might move on a network
- Cyber security
 - Firewalls
 - Port blocking

Conclusions

- Multiscale methodology works well and is inexpensive.
- Useful for correcting simulations' past and future predictions and leads to far fewer restarts.
- Technique can be applied to many (time dependent, nonlinear) PDE formulations used in the DDDAS field.
- HPC issues still need to be resolved and implemented seamlessly.

Request: Please send URLs for DDDAS projects to douglas-craig@cs.yale.edu for inclusion in http://www.dddas.org.