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The goal of reservoir simulation is to optimizeThe goal of reservoir simulation is to optimize
production scheduling under various marketproduction scheduling under various market
situation.situation.
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Model Equations

Linear transport model dominated by convection and diffusion:

∂C

∂t
+ v · ∇C −∇ · (D∇C) = 0 inΩ. (1)

By Darcy’s Law, v = −k∇p. Pressure p satisfies

−∇ · (k∇p) = 0 (2)

with some prescribed boundary conditions and initial condition/data
C(x, 0) = C0(x). C(x, t) is the contaminant concentration over the
porous medium Ω and at time level t, k is the permeability of the porous
medium. D is the diffusion coefficient.
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Object Function Notation

• Ns is the number of sensors installed in various points in the porous
medium and {xj}Ns

j=1 denote such points.

• Nt is how many times the concentration is measured in time and {tk}Nt
k=1

denote such time levels.

• γj(tk) is the measured concentration at sensor located in xj and at time
tk.
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• We seek initial data in a finite dimensional space spanned by C̃0
i (x),

C̃0(x) =
Nc∑

i=1

αiC̃
0
i (x), (3)

for some α = (α1, α2, · · · , αNc).

• Let C̃i(x, t) be the solution of (1) using an initial condition C̃0
i (x). Then

by superposition principle, the solution of (1) using C̃0(x) in (3) as an
initial condition has the following form:

C̃(x, t) =
Nc∑

i=1

αiC̃i(x, t). (4)
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Object Function Formulation

F (α) =
Ns∑

j=1

(
Nc∑

i=1

αiC̃i(xj, t)− γj(t)

)2

+
Nc∑

i=1

κi (αi − βi)
2 . (5)

• Includes a penalty term that contains the prior information related to the
initial data to regularize the problem.

• κ = (κ1, κ2, · · · , κNc) is the penalty coefficients for an a priori vector
β = (β1, β2, · · · , βNc). This prior information will be updated during the
simulation to achieve higher accuracy.
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Numerical Examples’ Configuration

• Unit square Ω = [0, 1]× [0, 1].

• The boundary conditions in the subsurface flow for the pressure equation
(2) are given pressure at the inlet and outlet edges (i.e., x = 0 and
x = 1, respectively), and no flow at the bottom and top edges (i.e.,
z = 0 and z = 1, respectively).

• The permeability k is generated with given correlation length lx = 0.25
and lz = 0.02, with a spherical variogram using GSLIB algorithms.

• For the convection-diffusion equation (1), we set the diffusion coefficient
D = 0.1 over all domain.
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• We assume zero concentration coefficient D = 0.1 over all domain.

• We assume zero concentration at the inlet, bottom, and top edges, and
a zero diffusion, i.e., (D∇C) · &n = 0, at the outlet edge, with &n being
the unit normal vector pointing outward on the outlet edge.

• The initial condition C0(x, z) is set to be nonzero in the region (0.2, 0.4)×
(0.2, 0.4) and zero elsewhere.

• Both pressure and convection-diffusion equations are solved by the finite
volume method using rectangular grids.

• The domain is descretized into 100 elements in each direction.

• Time step ∆t = 0.01.
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Example 1: Only β Updated
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Figure 1: Left: The initial condition profile. Right: Concentration at t=0.4
((x) indicates the sensor location).

• Measurement at time level t1 = 0.1, t2 = 0.2, t3 = 0.3, and t4 = 0.4.
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Example 2: Both β and κ Updated
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Figure 2: Updated initial condition: t = 0.1 (left), t = 0.3 (middle), t = 0.4
(right). Both β and κ are updated.
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Example 3: Twin Peaks
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Figure 3: Updated initial condition: t = 0.1 (top left), t = 0.2 (top right),
t = 0.3 (bottom left), t = 0.4 (bottom right). The prior for β assumes a
larger support.
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Multiscale Interpolation Principles

• Nontrivial since the solution space usually has high dimension while the
sensors are located at just a few locations. We pass the sensor data to
the simulations its use in the next time step.

• Since the sensor data represents the solution only at a few coarse locations
we modify the solution conditioned to this data. Two options for data:

– hard data is assumed to be correct, and
– soft data contains some noise and does not have to be imposed exactly.

• At the beginning of each time step we need to map the sensor data
to the solution space. This is performed using our DDDAS mapping
operator, which tries not to alter the heterogeneous field.
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Multiscale Interpolation Techniques

• Consider a general nonlinear parabolic equation:

∂

∂t
uε = ∇ · (aε(x, t, uε,∇uε)) + a0,ε(x, t, uε,∇uε), in Ω× [0, T ], (6)

where ε indicates the presence of the small scales heterogeneities. This
equation includes various physical process that occur in subsurfaces.

• Assume the domain is divided into the coarse grid such that the sensor
points are among the nodal points of the coarse grid. Sh is the space of
piecewise linear functions on this partition:

Sh = {vh ∈ C0(Ω) : the restriction vh is linear for each triangle K ∈ Πh}.
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• We will map the function defined on Sh onto the fine grid representing
the heterogeneities by constructing

E : Sh → V h
ε .

For each element in uh ∈ Sh at a given time tn we construct space time
function uε,h(x, t) in K × [tn, tn+1] such that it satisfies

∂

∂t
uε,h(x, t) = ∇ · (aε(x, t, η,∇uε,h)) (7)

in each coarse element K, where η is the average of uh. uε,h(x, t) is
calculated by solving (7) on the fine grid, and thus it is a fine scale
function.
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• To complete the construction of E we need to set boundary and initial
conditions for (7). Different boundary and initial conditions result in
different maps.

– We take the boundary and initial condition for the local problems to
be linear with prescribed nodal values.

– Values are obtained from the sensor data, if available.
– If the sensor data is not available at some location we use the values

obtained from the simulations.
– Different local boundary conditions can be imposed.

• Once the solution at time t = tn is computed its values with sensor data
at the sensor locations are compared.

– After changing the values of the solution we interpolate it to the fine
grid and use it for the next time step.
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– The solution at the next time step is calculated based on

∫

Ω
(uh(x, tn+1)− uh(x, tn))vhdx+

∑

K

∫ tn+1

tn

∫

K
((aε(x, t, η,∇uε,h),∇vh)+

a0,ε(x, t, η,∇uε,h)vh)dxdt =
∫ tn+1

tn

∫

Ω
fdxdt.

(8)

Ω refers to the spatial domain and K are the coarse elements.
– Note that our approach has limitations and it is not applicable when

there are large deviations between sensor data and the solution.
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Example 4: Configuration

• The systems we consider are intended to represent cross sections (in
x− z) of the subsurface.

– The fine-scale permeability field is generated on 121× 121 grid using
GSLIB algorithms with an exponential covariance model.

– We consider ∂
∂tu = ∇ · (aε(x)∇u), where the original true diffusion

coefficient aε(x) = exp(αε(x)), of the random field with correlation
lengths lx = 0.3, lz = 0.02 and variance σ = 0.75.

– We consider the diffusion coefficients to be the same realization of the
random field, but with σ = 1.5.

• Heterogeneities have the same nature. Only scaling gives difference
between the true field and the one used in the computations.
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Example 4: 4 Updates
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Figure 4: Comparisons of the average solutions across x and z directions.
Solid line designates the true solution, dotted line designates the solution
obtained using our simulations with 4 updates, and the dashed line
designates the solution that has not been updated.

• As expected, more updating produces a more accurate DDDAS.
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Conclusions

• Multiscale methodology works well and is inexpensive.

• Useful for correcting simulations’ past and future predictions and leads
to far fewer restarts.

• Technique can be applied to many (time dependent, nonlinear) PDE
formulations used in the DDDAS field.
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