Hierarchical Density-Based Clustering based on GPU Accelerated

Data Indexing Strategy

Danilo Melo! Savyo Toledo! Guilherme Andrade?
Fernando Mourdo! Aniket Chakrabarti Renato Ferreira®
Srinivasan Parthasarathy®> Leonardo Rochal

1. Federal University of Minas Gerais, Brazil
2. Federal University of S0 Jo&do del Rei, Brazil

3. Dept. of Computer Science and Engineering, The Ohio-State University

June - 2016

0 Motivation
@ Contribution

9 Optics
@ Optics Overview
@ Data Representation

© corTics
@ G-Optics Parallelization

e G-Optics Evaluation
@ Experimental Setup
@ Profiling Execution

e Graph construction evaluation
@ Total time evaluation
@ Parallel Comparison

e Conclusion

o Motivation

Motivation

Motivation Scenario

@ The large volume of data generated has emerged in recent
years a challenging scenario for several applications.

@ New proposals for models and algorithms that are able to
handle this data efficiently and effectively are emerging
every moment.

e Data Mining area!
o Clustering algorithms.

@ Social networks, recommendation systems,
bioinformatics..

Density-based Clustering

@ clusters are areas with high density separated by areas with low density

@ Dense area: if there are more them MinPts with a distance between them lower
than e — distance.

@ Density-based spatial clustering of applications with noise (DBSCAN)

R=3
MinPts = 4

Cluster 1

I Cluster2

Motivation

OPTICS Algorithm
@ Same idea of DBSCAN

@ Addresses one of DBSCAN's major weaknesses

@ The problem of detecting meaningful clusters in data of varying density

Motivation

OPTICS Problems

@ When comes to big volume of data, this strategies is
time-demanding.
@ Strategies has been proposed to make these applications
feasible.
e Data Indexation
o Parallel Computing

@ GPU has been given considerable importance, since these
are able of providing a higher level of parallelism than
multicore CPU's, associated with a lower energy
consumption.

Contribution

Contribution

In this work we present a new approach to make
OPTICS feasible based on data indexing strategy
parallelized using GPU.

Contribution

Contribution

In this work we present a new approach to make
OPTICS feasible based on data indexing strategy
parallelized using GPU.

V.

Contribution Characteristics

@ Representation as a graph G(V, E).

@ Compact Adjacent List
@ Graph Construction completely parallel

@ OPTICS algorithm becomes very fast

9 Optics

10/46

Optics Overview: Main Idea

@ Points of the database are (linearly) ordered

@ Points which are spatially closest become neighbors in the
ordering.

@ Special distance is stored for each point that represents

the density that needs to be accepted for a cluster in
order to have both points belong to the same cluster.

OPTICS Plot

DATASET

Figure: Image from: OPTICS on Text Data: Experiments and Test 11/46

Optics Overview: Main Concepts

e-neighborhood

@ The neighborhood of an object p is the set of objects s so
that distance(p, s) < e.

12/46

Optics Overview: Main Concepts

e-neighborhood

@ The neighborhood of an object p is the set of objects s so
that distance(p, s) < e.

core-distance of p

@ Smallest distance that makes p a core point. The
distance from p to the minPts — th neighbor.

13 /46

Optics Overview: Main Concepts

e-neighborhood

@ The neighborhood of an object p is the set of objects s so
that distance(p, s) < e.

core-distance of p

@ Smallest distance that makes p a core point. The
distance from p to the minPts — th neighbor.

reachability-distance (p,o0)

@ Smallest distance from p to o if o is a core object.

14 /46

Optics Overview: Algorithm Steps

Algorithm Steps

© OPTICS maintains a priority queue

15 /46

Optics Overview: Algorithm Steps

Algorithm Steps

© OPTICS maintains a priority queue
© Take object p and determines its core distance.

16 / 46

Optics Overview: Algorithm Steps

Algorithm Steps

© OPTICS maintains a priority queue
© Take object p and determines its core distance.

@ for all its neighbours g € N.(p) are calculated a new
reachability distance

17 /46

Optics Overview: Algorithm Steps

Algorithm Steps

© OPTICS maintains a priority queue
© Take object p and determines its core distance.

@ for all its neighbours g € N.(p) are calculated a new
reachability distance

© Insert or update g in priority queue

18 /46

Optics Overview: Algorithm Steps

Algorithm Steps

© OPTICS maintains a priority queue
© Take object p and determines its core distance.

@ for all its neighbours g € N.(p) are calculated a new
reachability distance

© Insert or update g in priority queue

© Repeat until Seeds is empty and there is no unprocessed
object

19 /46

Optics Overview: Algorithm Steps

Algorithm Steps

© OPTICS maintains a priority queue
© Take object p and determines its core distance.

@ for all its neighbours g € N.(p) are calculated a new
reachability distance

© Insert or update g in priority queue

© Repeat until Seeds is empty and there is no unprocessed
object

© Based on the output of OPTICS algorithm we can extract
any density-based clustering.

v

20 /46

Optics Overview: Algorithm Analysis

Algorithm Analysis

@ OPTICS is heavily dominated by the runtime to get or
consult e-neighborhood for core-distance and

reachability-distance operations. For each object,
OPTICS could be O(n?)

e Data indexing techniques can be useds

21 /46

© corTics

22/46

G-OPTICS: Data Representation

Data Representation

@ Represent the data as a graph G(V, E)
e V represents the objects to be clustered
e E the edges connecting the objects that are within the
minimum distance radius of each other (smaller than ¢)
e Edges weighted: distance between two objects

@ This distance can be calculated by metrics of similarity

@ Compact adjacency list.

23 /46

Data Representation

| EE—
2 1 3 1 Number of Neighbors
Va
0 2 3 6
Index of Ea

Considerations

@ ¢ and MinPts as Parameters

@ calculate the distance to other objects
@ Insert edge if distance is lower than ¢

@ Sort adjacent lists (QuickSort algorithm)

24 /46

Important Consideration

Optics Complexity

@ c-neighborhood of a object is a O(1) operation.

@ The sort step is very important as it makes the
complexity to search the MinPts™ neighbour O(1), which
corresponds to the process to find the core distance

@ heap structure to represent the priority queue Seeds
e Total Optics Complexity O(E * logV)

25 /46

Important Consideration

Optics Complexity

@ c-neighborhood of a object is a O(1) operation.

@ The sort step is very important as it makes the
complexity to search the MinPts™ neighbour O(1), which
corresponds to the process to find the core distance

@ heap structure to represent the priority queue Seeds
e Total Optics Complexity O(E * logV)

Graph Construction Complexity

@ O(V?), since, in the worst case, it will require a
comparison between each pair of objects

o Parallelization on GPU!

26 /46

Parallel implementation

Parallelization only Graph Construction

@ Higher complexity than the OPTICS process

@ Optics algorithm is based on dependent iterations which
limiting parallel opportunities.

v

Parallelization Steps

@ Vertice degree calculation (first Va)

o Adjacency index calculation (second Va)
@ Adjacency lists assembly (Ea)
@ Adjacency lists sorting

27 / 46

Parallelization Steps

y 5
ke 5
2 1 3 Number of Neighbors
Va
0 2 =l
Index of Ea

2 2 2 Neighbors
Ea
05 | 1.75 | 0.75 .
Distances
T
S A
O(E)

28 /46

Vertice degree calculation:

Vertice degree calculation:

@ Multiple cores of the GPU to process multiple vertices in
parallel

@ Thread to each vertex

@ Each GPU thread will count how many adjacent vertices
has under its responsibility, filling the first value on the
vector Va (Vay).

@ No dependencies!

29 /46

Adjacency index calculation:

Adjacency index calculation:

@ The second value in Va is related to the start index in Ea
of the adjacency list of a particular vertex

1 Vaz[l] = Vaz[i — 1] aF Va]_[i — 1]
o efficiently done in parallel using an exclusive_scan
operation filling the first value on the vector Va

@ For this operation, we used the thrust library

30/46

Adjacency lists assembly

Adjacency lists assembly

@ For each vertex, we know its degree and the start index of
its adjacency list, calculated in the two previous steps

@ Simply mount the compact adjacency list (Ea)
@ FEa; vertice id and Ea, vertice distance
@ We assign a GPU thread to each vertex

@ Each of these threads will fill the adjacency list of its
associated vertex with all vertices adjacent to it.

31/46

Adjacency lists sorting

Adjacency lists sorting

@ Having the vector Ea; and Ea, been completely filled, we
can now simply sort each adjacent list.

o Following the logic of the Third step, we assign a GPU
thread to each vertex

@ Each of these threads will sort the adjacency list of its
associated vertex

32/46

Adjacency lists sorting

Adjacency lists sorting

@ Having the vector Ea; and Ea, been completely filled, we
can now simply sort each adjacent list.

o Following the logic of the Third step, we assign a GPU
thread to each vertex

@ Each of these threads will sort the adjacency list of its
associated vertex

v

We adopt the Selection Sort, since the complexity of this
algorithm is always O(n?), in the worst, average and best
cases, consequently avoiding an unbalanced workload between
the gpu threads

\

33 /46

Completly process

Data Set is
read form
file Allocation and
> completion of points.
structures while
reading data set
Host
Device

Allocation of poits.
inates on

the

Points
coordinates
pass to
GPU

Vector of Va n
number of points B
s and va i

Kernel Thrust:

Calculation of the

Ineighbor lists indices|
(Va_)

ernel: Calculation
of number of
neighbors (V:

Kernel:
Filling the neighbors
lists (Ea)

Vector of Va_n
and Va iand Ea

Vector of Va_n
and Va iand Ea

Kemnel:
Sort neihbors lists
(Selection Sor))

Triggered N threads
corresponding to the
quantity of points

Triggered N threads
corresponding to the
quantity of points

Triggered N threads
corresponding to the
quantity of points

Optics Process

Figure: Computation and data transfers illustration.

o
keptin a Heap
structure

34/46

o G-Optics Evaluation

35 /46

Experimental Setup

Experimental Setup
@ Input data set between 5,000 and 700, 000 objects (2D).

@ Execution times: Construction of the graph, Sorting
process, OPTICS process. (CPU and GPU).

@ Data sets with 20 randomly generated Gaussian clusters

@ Parameters are fixed for all tests being MinPts = 4 and
e = 0.05.

@ Experimental Setup based in [?].

Experimental Setup

@ C and CUDA
@ Intel Core i7-4930K 3.40GHz processor with 32GB of memory.
@ Tesla K40c 12GB, with 2,880 CUDA cores.

| A\

36 /46

Profiling Execution

100000
10000 | = Build CPU
—4— Sort CPU 20, . 96.90,
1000 L. 714
Optics CPU 1566, 43,
100

10

1

01

0,01

0,001 0-003¢
0,0001
0,00001

FEL L FFITFF S

Data Sets

0.64c 0163,
0.23,

Time (s)

Considerations

@ It is easy to see that the graph construction dominates the execution time for all
tested datasets, being 99,97% of the total time for the 700, 000 objects dataset

37/46

e Graph construction evaluation

38/46

Graph construction evaluation

100000

== Build CPU '9565,49
== Build GPU -

10000

1000

100

Time (s)

10

——
=

U Poes
. r— il

PP P PSESSSS

Data Sets

39 /46

Graph construction evaluation

1000
== Euild Speedup
-?‘[-?za '?-!q_
'“9..?0* O34 25, 04y

100
(=%
3
=
a
2 10
A

PEFLFFSFFSEFLS

Data Sets

Considerations
@ For values of N greater than 100,000 the growth is less pronounced stabilizing

around N = 600,000 with a 214X speedup.
40/ 46

Total time evaluation

100000

—— Total CPU 8568, 7.
—4— Total GPU 4393 63

10000

1000

100

10

Time (s)

gt P

e

PEELFES PSP ES

Data Sets

41/46

Total time evaluation

1000
== Total Speedup 2
20, 205, 211
15, g, 0z 05
8, 7 x 3 o
100
o
3
=
@
4 10
7]

FEFP LSS EPS

Data Sets

Considerations
@ We can see that the the maximum speedup achieved was 211x, decreasing the

execution time from 8,568.75s on CPU to 40.59s on GPU, with 700, 000

objects

42 /46

Parallel Comparison

3000 35
Bt
288 20,08 29! "
2500
50 25
2000 2
=
o 20
£ = 4-CPU G-OPTICS g
E 1500 3
< W 8-CPU G-OPITICS 2
3 GPU G-DPTICS 5 &
g
& 1000 —#— GPU Speedup
10
500 o 5
3 8 o i B § g
- - -
0 M kal ~ o] 0
100000 300000 500000 700000

(a) Parallel Comparison

43 /46

@ Conclusion

44 /46

Conclusion

Conclusions

@ Presented G-OPTICS
o Efficient use of indexation for OPTICS
@ Paralleliazation to speedup indexation construction.

o

@ New parallel proposals for Optics

@ PRIM’s Minimum Spanning Tree algorithm
@ Multiple GPUs

@ Evaluate all these proposals on real data scenarios

45 /46

Questions?

46 / 46

	Motivation
	Contribution

	Optics
	Optics Overview
	Data Representation

	G-OPTICS
	G-Optics Parallelization

	G-Optics Evaluation
	Experimental Setup
	Profiling Execution

	Graph construction evaluation
	Total time evaluation
	Parallel Comparison

	Conclusion

