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Motivation

Motivation Scenario

The large volume of data generated has emerged in recent
years a challenging scenario for several applications.

New proposals for models and algorithms that are able to
handle this data efficiently and effectively are emerging
every moment.

Data Mining area!
Clustering algorithms.

Social networks, recommendation systems,
bioinformatics..
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Motivation

Density-based Clustering
clusters are areas with high density separated by areas with low density

Dense area: if there are more them MinPts with a distance between them lower
than ε− distance.

Density-based spatial clustering of applications with noise (DBSCAN)
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Motivation

OPTICS Algorithm
Same idea of DBSCAN

Addresses one of DBSCAN’s major weaknesses

The problem of detecting meaningful clusters in data of varying density
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Motivation

OPTICS Problems

When comes to big volume of data, this strategies is
time-demanding.

Strategies has been proposed to make these applications
feasible.

Data Indexation
Parallel Computing

GPU has been given considerable importance, since these
are able of providing a higher level of parallelism than
multicore CPU’s, associated with a lower energy
consumption.
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Contribution

Contribution

In this work we present a new approach to make
OPTICS feasible based on data indexing strategy

parallelized using GPU.

Contribution Characteristics

Representation as a graph G (V ,E ).

Compact Adjacent List

Graph Construction completely parallel

OPTICS algorithm becomes very fast
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Optics Overview: Main Idea

Main Idea

Points of the database are (linearly) ordered

Points which are spatially closest become neighbors in the
ordering.

Special distance is stored for each point that represents
the density that needs to be accepted for a cluster in
order to have both points belong to the same cluster.

Figure: Image from: OPTICS on Text Data: Experiments and Test
Results
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Optics Overview: Main Concepts

ε-neighborhood

The neighborhood of an object p is the set of objects s so
that distance(p, s) ≤ ε.

core-distance of p

Smallest distance that makes p a core point. The
distance from p to the minPts − th neighbor.

reachability-distance (p,o)

Smallest distance from p to o if o is a core object.
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Optics Overview: Algorithm Steps

Algorithm Steps

1 OPTICS maintains a priority queue

2 Take object p and determines its core distance.

3 for all its neighbours q ∈ Nε(p) are calculated a new
reachability distance

4 Insert or update q in priority queue

5 Repeat until Seeds is empty and there is no unprocessed
object

6 Based on the output of OPTICS algorithm we can extract
any density-based clustering.
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Optics Overview: Algorithm Analysis

Algorithm Analysis

OPTICS is heavily dominated by the runtime to get or
consult ε-neighborhood for core-distance and
reachability-distance operations. For each object,
OPTICS could be O(n2)

Data indexing techniques can be useds
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G-OPTICS: Data Representation

Data Representation

Represent the data as a graph G (V ,E )

V represents the objects to be clustered
E the edges connecting the objects that are within the
minimum distance radius of each other (smaller than ε)
Edges weighted: distance between two objects

This distance can be calculated by metrics of similarity

Compact adjacency list.
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Data Representation

Considerations
ε and MinPts as Parameters

calculate the distance to other objects

Insert edge if distance is lower than ε

Sort adjacent lists (QuickSort algorithm)
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Important Consideration

Optics Complexity

ε-neighborhood of a object is a O(1) operation.

The sort step is very important as it makes the
complexity to search the MinPts th neighbour O(1), which
corresponds to the process to find the core distance

heap structure to represent the priority queue Seeds

Total Optics Complexity O(E ∗ logV )

Graph Construction Complexity

O(V 2), since, in the worst case, it will require a
comparison between each pair of objects

Parallelization on GPU!
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Parallel implementation

Parallelization only Graph Construction

Higher complexity than the OPTICS process

Optics algorithm is based on dependent iterations which
limiting parallel opportunities.

Parallelization Steps

Vertice degree calculation (first Va)

Adjacency index calculation (second Va)

Adjacency lists assembly (Ea)

Adjacency lists sorting
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Parallelization Steps
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Vertice degree calculation:

Vertice degree calculation:

Multiple cores of the GPU to process multiple vertices in
parallel

Thread to each vertex

Each GPU thread will count how many adjacent vertices
has under its responsibility, filling the first value on the
vector Va (Va1).

No dependencies!
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Adjacency index calculation:

Adjacency index calculation:

The second value in Va is related to the start index in Ea
of the adjacency list of a particular vertex

Va2[i ] = Va2[i − 1] + Va1[i − 1]

efficiently done in parallel using an exclusive scan
operation filling the first value on the vector Va

For this operation, we used the thrust library
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Adjacency lists assembly

Adjacency lists assembly

For each vertex, we know its degree and the start index of
its adjacency list, calculated in the two previous steps

Simply mount the compact adjacency list (Ea)

Ea1 vertice id and Ea2 vertice distance

We assign a GPU thread to each vertex

Each of these threads will fill the adjacency list of its
associated vertex with all vertices adjacent to it.
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Adjacency lists sorting

Adjacency lists sorting

Having the vector Ea1 and Ea2 been completely filled, we
can now simply sort each adjacent list.

Following the logic of the Third step, we assign a GPU
thread to each vertex

Each of these threads will sort the adjacency list of its
associated vertex

Consideration

We adopt the Selection Sort, since the complexity of this
algorithm is always O(n2), in the worst, average and best

cases, consequently avoiding an unbalanced workload between
the gpu threads
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Completly process

Figure: Computation and data transfers illustration.
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Experimental Setup

Experimental Setup

Input data set between 5, 000 and 700, 000 objects (2D).

Execution times: Construction of the graph, Sorting
process, OPTICS process. (CPU and GPU).

Data sets with 20 randomly generated Gaussian clusters

Parameters are fixed for all tests being MinPts = 4 and
ε = 0.05.

Experimental Setup based in [?].

Experimental Setup
C and CUDA

Intel Core i7-4930K 3.40GHz processor with 32GB of memory.

Tesla K40c 12GB, with 2,880 CUDA cores.
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Profiling Execution

Considerations
It is easy to see that the graph construction dominates the execution time for all
tested datasets, being 99,97% of the total time for the 700, 000 objects dataset
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Graph construction evaluation
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Graph construction evaluation

Considerations
For values of N greater than 100, 000 the growth is less pronounced stabilizing
around N = 600, 000 with a 214× speedup.
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Total time evaluation
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Total time evaluation

Considerations
We can see that the the maximum speedup achieved was 211x , decreasing the
execution time from 8, 568.75s on CPU to 40.59s on GPU, with 700, 000
objects
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Parallel Comparison

(a) Parallel Comparison
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Conclusion

Conclusions

Presented G-OPTICS

Efficient use of indexation for OPTICS

Paralleliazation to speedup indexation construction.

Future Works

New parallel proposals for Optics

PRIM’s Minimum Spanning Tree algorithm

Multiple GPUs

Evaluate all these proposals on real data scenarios
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Thank you!

Questions?
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