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Motivation

Motivation Scenario

@ The large volume of data generated has emerged in recent
years a challenging scenario for several applications.

@ New proposals for models and algorithms that are able to
handle this data efficiently and effectively are emerging
every moment.

e Data Mining area!
o Clustering algorithms.

@ Social networks, recommendation systems,
bioinformatics..




Density-based Clustering

@ clusters are areas with high density separated by areas with low density

@ Dense area: if there are more them MinPts with a distance between them lower
than e — distance.

@ Density-based spatial clustering of applications with noise (DBSCAN)

R=3
MinPts = 4

Cluster 1

I Cluster2



Motivation

OPTICS Algorithm
@ Same idea of DBSCAN

@ Addresses one of DBSCAN's major weaknesses

@ The problem of detecting meaningful clusters in data of varying density




Motivation

OPTICS Problems

@ When comes to big volume of data, this strategies is
time-demanding.
@ Strategies has been proposed to make these applications
feasible.
e Data Indexation
o Parallel Computing

@ GPU has been given considerable importance, since these
are able of providing a higher level of parallelism than
multicore CPU's, associated with a lower energy
consumption.




Contribution

Contribution

In this work we present a new approach to make
OPTICS feasible based on data indexing strategy
parallelized using GPU.




Contribution

Contribution

In this work we present a new approach to make
OPTICS feasible based on data indexing strategy
parallelized using GPU.

V.

Contribution Characteristics

@ Representation as a graph G(V, E).

@ Compact Adjacent List
@ Graph Construction completely parallel

@ OPTICS algorithm becomes very fast




9 Optics
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Optics Overview: Main Idea

@ Points of the database are (linearly) ordered

@ Points which are spatially closest become neighbors in the
ordering.

@ Special distance is stored for each point that represents

the density that needs to be accepted for a cluster in
order to have both points belong to the same cluster.

OPTICS Plot

DATASET

Figure: Image from: OPTICS on Text Data: Experiments and Test 11/46



Optics Overview: Main Concepts

e-neighborhood

@ The neighborhood of an object p is the set of objects s so
that distance(p, s) < e.
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Optics Overview: Main Concepts

e-neighborhood

@ The neighborhood of an object p is the set of objects s so
that distance(p, s) < e.

core-distance of p

@ Smallest distance that makes p a core point. The
distance from p to the minPts — th neighbor.

reachability-distance (p,o0)

@ Smallest distance from p to o if o is a core object.
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Optics Overview: Algorithm Steps

Algorithm Steps

© OPTICS maintains a priority queue
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© Take object p and determines its core distance.
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Algorithm Steps

© OPTICS maintains a priority queue
© Take object p and determines its core distance.

@ for all its neighbours g € N.(p) are calculated a new
reachability distance

© Insert or update g in priority queue

© Repeat until Seeds is empty and there is no unprocessed
object
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Optics Overview: Algorithm Steps

Algorithm Steps

© OPTICS maintains a priority queue
© Take object p and determines its core distance.

@ for all its neighbours g € N.(p) are calculated a new
reachability distance

© Insert or update g in priority queue

© Repeat until Seeds is empty and there is no unprocessed
object

© Based on the output of OPTICS algorithm we can extract
any density-based clustering.

v
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Optics Overview: Algorithm Analysis

Algorithm Analysis

@ OPTICS is heavily dominated by the runtime to get or
consult e-neighborhood for core-distance and

reachability-distance operations. For each object,
OPTICS could be O(n?)

e Data indexing techniques can be useds
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© corTics
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G-OPTICS: Data Representation

Data Representation

@ Represent the data as a graph G(V, E)
e V represents the objects to be clustered
e E the edges connecting the objects that are within the
minimum distance radius of each other (smaller than ¢)
e Edges weighted: distance between two objects

@ This distance can be calculated by metrics of similarity

@ Compact adjacency list.

23 /46



Data Representation

| EE—
2 1 3 1 Number of Neighbors
Va
0 2 3 6
Index of Ea

Considerations

@ ¢ and MinPts as Parameters

@ calculate the distance to other objects
@ Insert edge if distance is lower than ¢

@ Sort adjacent lists (QuickSort algorithm)
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Important Consideration

Optics Complexity

@ c-neighborhood of a object is a O(1) operation.

@ The sort step is very important as it makes the
complexity to search the MinPts™ neighbour O(1), which
corresponds to the process to find the core distance

@ heap structure to represent the priority queue Seeds
e Total Optics Complexity O(E * logV)
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Important Consideration

Optics Complexity

@ c-neighborhood of a object is a O(1) operation.

@ The sort step is very important as it makes the
complexity to search the MinPts™ neighbour O(1), which
corresponds to the process to find the core distance

@ heap structure to represent the priority queue Seeds
e Total Optics Complexity O(E * logV)

Graph Construction Complexity

@ O(V?), since, in the worst case, it will require a
comparison between each pair of objects

o Parallelization on GPU!
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Parallel implementation

Parallelization only Graph Construction

@ Higher complexity than the OPTICS process

@ Optics algorithm is based on dependent iterations which
limiting parallel opportunities.

v

Parallelization Steps

@ Vertice degree calculation (first Va)

o Adjacency index calculation (second Va)
@ Adjacency lists assembly (Ea)
@ Adjacency lists sorting

27 / 46



Parallelization Steps
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Vertice degree calculation:

Vertice degree calculation:

@ Multiple cores of the GPU to process multiple vertices in
parallel

@ Thread to each vertex

@ Each GPU thread will count how many adjacent vertices
has under its responsibility, filling the first value on the
vector Va (Vay).

@ No dependencies!
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Adjacency index calculation:

Adjacency index calculation:

@ The second value in Va is related to the start index in Ea
of the adjacency list of a particular vertex

1 Vaz[l] = Vaz[i — 1] aF Va]_[i — 1]
o efficiently done in parallel using an exclusive_scan
operation filling the first value on the vector Va

@ For this operation, we used the thrust library

30/46



Adjacency lists assembly

Adjacency lists assembly

@ For each vertex, we know its degree and the start index of
its adjacency list, calculated in the two previous steps

@ Simply mount the compact adjacency list (Ea)
@ FEa; vertice id and Ea, vertice distance
@ We assign a GPU thread to each vertex

@ Each of these threads will fill the adjacency list of its
associated vertex with all vertices adjacent to it.
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Adjacency lists sorting

Adjacency lists sorting

@ Having the vector Ea; and Ea, been completely filled, we
can now simply sort each adjacent list.

o Following the logic of the Third step, we assign a GPU
thread to each vertex

@ Each of these threads will sort the adjacency list of its
associated vertex
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Adjacency lists sorting

Adjacency lists sorting

@ Having the vector Ea; and Ea, been completely filled, we
can now simply sort each adjacent list.

o Following the logic of the Third step, we assign a GPU
thread to each vertex

@ Each of these threads will sort the adjacency list of its
associated vertex

v

We adopt the Selection Sort, since the complexity of this
algorithm is always O(n?), in the worst, average and best
cases, consequently avoiding an unbalanced workload between
the gpu threads

\
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Completly process
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o G-Optics Evaluation
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Experimental Setup

Experimental Setup
@ Input data set between 5,000 and 700, 000 objects (2D).

@ Execution times: Construction of the graph, Sorting
process, OPTICS process. (CPU and GPU).

@ Data sets with 20 randomly generated Gaussian clusters

@ Parameters are fixed for all tests being MinPts = 4 and
e = 0.05.

@ Experimental Setup based in [?].

Experimental Setup

@ C and CUDA
@ Intel Core i7-4930K 3.40GHz processor with 32GB of memory.
@ Tesla K40c 12GB, with 2,880 CUDA cores.

| A\
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Profiling Execution
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Considerations

@ It is easy to see that the graph construction dominates the execution time for all
tested datasets, being 99,97% of the total time for the 700, 000 objects dataset
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e Graph construction evaluation
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Graph construction evaluation
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Graph construction evaluation
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@ For values of N greater than 100,000 the growth is less pronounced stabilizing

around N = 600,000 with a 214X speedup.
40/ 46




Total time evaluation
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Total time evaluation
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Considerations
@ We can see that the the maximum speedup achieved was 211x, decreasing the

execution time from 8,568.75s on CPU to 40.59s on GPU, with 700, 000

objects
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Parallel Comparison
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@ Conclusion
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Conclusion

Conclusions

@ Presented G-OPTICS
o Efficient use of indexation for OPTICS
@ Paralleliazation to speedup indexation construction.

o

@ New parallel proposals for Optics

@ PRIM’s Minimum Spanning Tree algorithm
@ Multiple GPUs

@ Evaluate all these proposals on real data scenarios

45 /46



Questions?
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