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Abstract

We present a dynamic data-driven decision support for aquaculture farm closure. In decision
support, we use machine learning techniques in predicting closures of a shellfish farm. As
environmental time series are used in closure, we propose two approaches using time series and
machine learning for closure prediction. In one approach, we consider time series prediction and
then using expert rules to predict closure. In other approach, we use time series classification for
closure prediction. Both approaches exploit a dynamic data-driven technique where prediction
models are updated with the update of new data to predict closure decisions. Experimental
results at a case study shellfish farm validate the applicability of the proposed method in
aquaculture decision support.
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1 Introduction

Data-driven approaches are widely used in many decision support systems [1]. Most of the
decision support systems consider historical data for analysis and decision making. Decisions
are usually made in a static way meaning that there is not much update in data and hence in
the data-driven models used in the decision support systems. On the contrary, in dynamic data-
driven approaches for decision support systems [2], data and associated models are updated to
provide decisions.

Although, there exist decision support systems in aquaculture domain [3], the use of dynamic

approach where models are updated and decisions are predicted based on the updated data fitted
to the models is limited to the best of our knowledge. The current decision support system for
Tasmanian Shellfish Quality Assurance Program (TSQAP) provides status of the closure based
on the expert rules applied to the observed environmental sensor data such as rainfall, river flow
and salinity. These environmental sensor data provide proxy for contaminants in the water. A
snapshot of the current system is shown in Figure 1. In the system, the current closure status
or decisions of the shellfish farms which are made manually by relevant authorities are shown.
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Figure 1: A snapshot of current decision support of TSQAP

In aquaculture decision support, we want to add the capability of predicting closure decision
at least one day ahead using dynamic data-driven approaches. This predictive capability will
benefit shellfish farms and relevant authorities to take decisions early related to the closure or
opening status. We explain our proposed approach in Figures 2 and 3. First, we show the data-
driven model learning in Figure 2. Historical data of related environmental variables for closure
of shellfish farms are transformed and fused together as time series. Closure information for
shellfish farms are also integrated. Then we consider two alternative ways in predicting closure
decisions. One way is to predict the variable causing the farm closure. In this paper, we consider
salinity. To predict salinity one day ahead, we consider salinity, water temperature, rainfall and
river flow as input variables. After predicting salinity, we apply expert rules (thresholds) on
the predicted salinity whether farm may be closed one day ahead. The other way is to predict
closure using time series classification. In this technique, rather predicting salinity one day
ahead and using rules on the predicted salinity, we use time series features of salinity, water
temperature, river flow and rainfall to predict the closure.

When the models are learned and recommended from Figure 2, we use the dynamic ap-
proach where prediction is made using time series data. In the dynamic approach, we feed the
input parameters to the learned model and a decision is recommended. The learned models are
also updated in the module. This is shown in Figure 3.

We consider the following contributions in this paper.

• We propose and develop a dynamic data-driven decision support for aquaculture. In
dynamic data-driven approach, we use time series prediction and classification models.
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Figure 3: Predicting closure based on learned model and recent data arrival(on-line)

• We exploit two ways in predicting closure decisions. One way is to predict environmen-
tal time series that is considered proxy for closure and then to use expert rules on the
predicted data. Other way is to use time series classification for predicting closures.
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This paper is organized as follows. In Section 2, we briefly present related research. Methods
are discussed in Section 3. We present experimental results for a shellfish farm in Section 4.
Finally we conclude in Section 5.

2 Related research

Decision support systems can be data-driven where decisions are usually made based on the
intelligent data analysis. Most of these data-driven decision support systems are also static
meaning that decisions are made based on the models derived from existing historical data.
The applications of data-driven decision support systems include many domains such as finance,
supply-chain [1], clinical[4] and environment[5].

Dynamic data-driven application systems (DDDAS) are being developed for many areas
such as environmental monitoring [6], natural disaster [7], hazard analysis [8], transport systems
[9, 10], emergency management [11], healthcare [12] and cyber-physical systems [13]. DDDAS
systems can include decision support systems [2, 14]. In [2], real-time data is assimilated
with simulation model to update the initial parameters for oil spill incidents management and
decision making. For dynamic capabilities of a decision support system, there is a need to
include functionalities that can cope with changes in data [15].

In aquaculture, there exist some data-driven decision support systems [16, 17, 18]. The
decision support system for aquaculture facility management and planning is studied in [16].
In cage aquaculture [17], a decision support system is developed with functionalities of site
classification and selection, capacity of the farms and economic appraisal for a specific site.
For aquaculture licensing, a decision support that can provide environmental impacts on aqua-
culture for a location is studied in [18]. All these systems exhibit the static properties of a
data-driven decision support for aquaculture.

Time series analysis and prediction are used in decision support systems for business [19]
and agriculture [20]. Different soft computing (i.e. fuzzy) and statistical techniques are used
in predicting time series in [19]. In agricultural decision support system for crops, rainfall and
evaporation time series are predicted using fuzzy logic.

Time series classification are also used in decision support systems in stock trend prediction
[21] and supply-chain management [22] . In [21], classification and clustering techniques are
used in producing a multidimensional decision support indicator for predicting stock trends.
An intelligent system to classify time series data using support vector machine for supply-chain
domain is investigated in [22].

3 Methods

In this section, we discuss the general methods. First, we consider data transformation and
fusion. Then we consider two approaches in predicting closure status. First approach is to
predict environmental variable related to closure and to apply expert rules as classifier on the
predicted value. The other approach is to use time series classification-based prediction where
multiple classifiers are used in predicting closure. Finally, prediction models are updated when
new data arrive in the system.
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3.1 Time series data transformation and fusion

In this method, time series data are extracted, transformed and integrated. As time series data
are collected from heterogeneous sources, sampling rates can be different. We transform salinity
and water temperature data from minutes to daily resolution. River flow data is transformed
from minutes to daily resolution. Rainfall and closure data are already at daily resolution.

3.2 Prediction models

We consider the following two approaches in prediction.

3.2.1 Closure prediction using time series prediction and expert rules

In this approach we first predict the environmental variable that is considered as proxy (reason)
for closure. Then we apply the expert rules on the predicted value to predict closure decisions.
For example, if salinity is the main variable for closure decision, we consider the following steps:

Step 1: We define the prediction as salt+1 = f(salt, salt−1, · · · , salt−p, rft, rft−1, · · · , rft−q,

raint, raint−1, · · · , raint−r, wtt, wtt−1, · · · , wtt−s) where sal is salinity, rf is river flow, wt is
water temperature, rain is rainfall and t is the current day. The lag values p, q, r, s can be
different in the model. f is the regression model used in prediction.

Step 2: If salt+1 op threshold, then decision1t+1
else decision2t+1

where op is the operator
such as greater than or less than and threshold is the value decided by the domain expert.
decision can be either open or close status of the farm.

We exploit machine learning techniques in predicting time series [23]. We use regression
techniques such as M5P [24], support vector regression (SMOReg) [25], linear regression (LR)
and artificial neural network (NN) [26]. In NN, we use multilayer perceptron (MLP) with
different hidden layers. As input to the regression methods, we provide combination of time
lags with a maximum of 5 days and a minimum of 1 day for one day ahead prediction. A model
with minimum mean squared error (MSE) is recommended for prediction of a time series.

3.2.2 Closure prediction using time series classification

In this approach, we also exploit machine learning on time series data to classify (i.e. predict)
closure [27]. This approach is different from the previous approach where we predict time series
to apply expert rules for closure prediction. We use time series features to predict a closure
decision.

We define this method in the following.
decisionit+1

= f(salt, salt−1, · · · , salt−p, rft, rft−1, · · · , rft−q, raint, raint−1, · · · , raint−r,

wtt, wtt−1, · · · , wtt−s) where f is the classifier. decisionit+1
is the closure decision predicted

for one day ahead.
In time series classification, lagged window of time series is used as feature in classifier

model to predict the decision (output label). We use support vector regression (SMO) and NN
as classifier for predicting closure one day ahead.

3.3 On-line prediction based on learned models

When we have learned models, we use those models to predict closure using recent values of
the environmental time series. The models can be either time series prediction and expert rule-
based approach or time series classification-based approach. The initial models are learned from
the existing historical data. As the data arrive in the system, the new data can be added to the
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historical data to refine the model. In this method, learned models are updated periodically with
the arrival of new data in the system. This provides the dynamic and incremental capability of
learning models in predicting closure decisions.

4 Experimental results

We use data set for a shellfish farm at Moulting Bay Zone 1 at Tasmania, Australia as a case
study. The shellfish farm at this location use salinity as primary trigger for closure of the farm.
We consider data from 1/07/2012 to 31/08/2013. Last two month data is considered for testing
and the remaining data is considered for training regression and classification models.

We transform environmental data as daily time series data and integrate with closure data
from multiple sources. Salinity, water temperature and closure data are collected from Tas-
manian Shellfish Quality Assurance Program (TSQAP)[28]. River flow data is collected from
Department of Primary Industries Parks, Water and Environment (DPIPWE) [29]. Rainfall
data is collected from Bureau of Meteorology (BOM) [30].

Technique Lag days(River flow-Rainfall-Water temperature-Salinity) MSE

M5P 1-1-1-3 0.361
SMOReg 1-1-3-1 0.365

LR 1-2-2-1 0.375
NN (Hidden layer=3) 2-1-1-1 0.395

Table 1: Models ordered on MSE

4.1 Time series prediction-based closure prediction

In Table 1, we present different regression models and lag days used in building prediction model
for salinity time series data. The models are ordered according to the lowest mean squared error
(MSE) on the training data.

We show the actual and predicted time series in Figure 4 using trained models shown in
Table 1. We find that the model M5P using river flow, rainfall and water temperature with 1
day lag and salinity with 3 days lag performs best. We now apply the TSQAP rules (if Salinity
≤ 30 PSU, then close) on the predicted salinity using M5P model for closure prediction. The
accuracy of closure prediction on the testing data is shown in the Table 2. The overall accuracy
of prediction is 83%. The accuracy of the opening prediction is 92% and the accuracy of the
closure prediction is 66%.

Closed Opened
Closed 14 7
Opened 3 36

Table 2: Closure prediction using time series prediction with expert rules
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Figure 4: Prediction results of salinity

4.2 Time series classification-based closure prediction

We now present the prediction of closures using time series classification. In this case, we use
a window of lagged time series as input and the closure information (open/close) as output
(labels) for classifiers.

The prediction accuracy using support vector machine (SMO) and neural network with
single hidden layer are shown in Tables 3 and 4 respectively. We find that the accuracy of
SMO in Table 3 is similar to the expert rule-based prediction shown in Table 2. However, the
accuracy of predicting close using NN (81%) is higher than the accuracy of predicting close
using SMO (66%).

Closed Opened
Closed 14 7
Opened 3 36

Table 3: Closure prediction using time series classification with SMO

Closed Opened
Closed 17 4
Opened 8 31

Table 4: Closure prediction using time series classification with NN(H=1)
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5 Conclusions

We presented a dynamic data-driven decision support for shellfish farm closure. Machine learn-
ing techniques on time series data are used in predicting closure of a farm. In building prediction
models, we used a dynamic data-driven technique where learned models are updated to predict
decisions. We plan to include capabilities to adapt missing values in prediction models. We
also plan to evaluate the performance of the prediction capabilities of the system.
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