Procedia Computer Science

Volume 29, 2014, Pages 1299-1313

ICCS 2014. 14th International Conference on Computational Science ompute

Static versus Dynamic

Dat

anal ysis usingS®OODKISUKsfto r

Erik BlascH, Youssif A-Nashif 2, Salim Hariri?

L Air Force Research Lab, Informatiddirectorate
2 NSF Center for Cloud and Autonomic Computing, The University of Arizona
erik.blasch.1@us.af.mil,alnashif@ece.arizona.edhariri@ecearizonaedu

Abstract

Information fusion includes signals, features, and decilgwal analysis over
various types of data including imagery, text, and cybecurity detection With the
maturity of data processing, the explosion of big data, and the need for user acceptance;
the Dynamic Datdriven Application System (DDDAS) philosophy fosters insights
into the usability of information systems solutions. In this paper, we explore a notion of
an adaptive adjustment of secure communicatimst analysisthat seeks a balance
between standard static solutions versus dynalata driven updates. A use case is
provided in determining trust for a cybsecurity scenario exploring comparisons of
Bayesian versus evidential reasonfog dynamic security detectionpdates Using the
evidential reasoningroportional conflict redistribution (PCR) method, we demonstrate
improved trust for dynamically changing detections of denial of service attacks.

1 Introduction

Information fusion (Blaschet al., 2012) has a wellocumented following of different methods,
processes, and techniques emerging from control, probabilty, and communication theories.
Information fusion systems designs require methods for big data analysis, secure communications,
and spport to end users. Current information fusion systems use probability, estimation, and signal
processing. Extending theses techniques to operational needs requires an assessment of some of the
fundamental assumptions such as secure communications ovieusvadata, applications, and
systems. Specifically, the key focus of this paper is based on the question of measuring trust in static
versus dynamic information fusion systems.

Staticversus gnamic information fusiomomes fromthree perspectives sucldat, models, and
processing. As related to information fusion techniques, many studies exist on centralized versus
distributed processing, single versus multiple models, and stovepipe versusnoudtiidata. In each
case, static information fusion resits centralized processing from single model estimation over a

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014 1299
© The Authors. Published by Elsevier B.V.



Static versus Dynamic Data Information Fusion analysis using DDDAS... E. Blasch et al.

single source of data. On the other extreme is distributed processing, using rmdtghdds over

mu lti-modal data; which in reality is supposed to cover the entire gamut of big data sobagidnsed

in largescale systems designs. In reality, with such an ambitious goal, there are always fundamental
assumptions that tailor the system design to the user needs. For example, a system could be designed
to capture all image data being collecteari surveillance sensors; however filtering collections over

a specific area, for a designated time internal, at a given frequency helps to refine answers to user
requests. Thus, as a user selects the details of importance, responses should be accegdéik,

and trustworthy.

Dynamic information fusiois a key analysis of the paper of which we focus on trust. If a machine
is processing all the data, then time and usability constraints cannot be satisfied. Thus, either the user
or the machine must datmine the appropriate set of data, models, and processing that is needed for a
specific application. Trust analysis is required to determine security and reliability constraints, and
DDDAS provides a fresh look at the balance between static and dyndarimation fusion. In this
paper, we explore the notions of dynamic information fusion towards decision making as cyber
detections change.

In Section 2 we overview information fusion and DDDAS. Section 3 discusses the notions of trust
as a means to balanbetween information fusion and dynamic data detections. Section 4 compares
Bayesian versus evidential reasoning. Section 5 provides -aassefor analysis for cyber trust and
Section 6 provides conclusions.

2 Information Fusion and DDDAS

Information fusion and DDDAS overlap in many areas such as data measurements, statistical
reasoning, and software development for various applications. Recently, there is an interest in both
communities to address big data, software structures, and ysieatipns. The intersection of these
areas includes methods of information management (Blasch, 2006) in assessing trust in data access,
dynamicprocessing, and distribution fapplicationsbasedend users.

2.1 Information Fusion

The Data Fusion InformationGroup (DFIG) modé, shown inFigure 1, provides the various
attributes of an information fusion systems desigformation fusion concepts are divided between
Low-level Information Fusion (LLIF) and Higlevel Information Fusion (HLIF) (Blaschet al.,
2012). LLIF (LO-1) composes da registration (Level 0 [LOJand explicit object assessment (L1)
such as an aircraft location and ident{tyang, 2009) HLIF (L2-6) composes much of the open
discussions in the last decade. The levels, to denote processinggi situation (L2) and impact (L3)
assessment with resource (L4), user ((Blpsch, 2002)and mission (L6) refinemeriBlasch, 2005)
Here we focus on Level 5 fusidtny addressingyber securitytrustin systems design.
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Figure 1. DFIG Information Fusion moddL = Information FusiorLevel).

Data access for information fusisaquires an information management (IM) model of the enterprise
architecture, as shown Figure 2 The IM model illustrates the coordination and flow of d&t@ugh
the enterprise with the various layers (Blasehal., 2012).

People or autonomous ageimseract with the managkeinformation enterprise environment by
producing and consuming informatioWarious actors and their activities/services within lhh
enterprise surround the IM model that transforms data into information. Within the IM model, there
are various services that are needed to process the managed information objects (MIOs). Security is
the first level of interaction between users and data
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Figure 2. Information Management (IM) Model.

A set ofservice layes are defined that use artifacts to perfapecificservices An artifact is a
piece of information that is acted upon by a service or that influences the behahiesefvice (e.g.,
a policy). The service layers defined by the model are: Security, Workflow, Quality of Service (QoS),
Transformation, Brokerage, and Maintenance. These services are intelligent agents that utilize the
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information space within the architure, such as cloud computing and machine analytics. Access to
the datarequires secure communications which is dynamictgagalriven, and application specific.

2.2 Dynamic Data Driven Application Systems (DDDAS)

DDDAS is focused on applications modeligcenarios), mathematical and statistical algorithms
(theory), measurement systems, and systems software as shieigarien 3 For a systems application,
user mission needs drive data access over the scenarios. The available data is processed from
measurenents to information using theoretical principles. The dhiaen results are presented to the
user through visualizations; however the trust in the data is compounded by data quality, the model
fidelity, and systems availability of which software is ategral part to a systems application.

Information ® Ceeeriae @
Fusion Levels

Theory

Measurements 4 @D contro

Menagement inieraction

Figure 3. DDDAS Aligned with Information Fusion

Using a cyber example for DDDAS, the application is secure data communications to meet
mission needs (L6). While not a oth@one mapping, it can basssumed that data management, driven
by scenarios, identifies cyber threat attacks (L3) such as denial of service attacks. The theory and
measurements come from the models of normal behavior (L1) which use computational methods to
support cyber situationnareness (L2) visualization. The user (L5) interacts with the machine through
data management (L4), as new measurements arrive. Current research seeks distributed, faster, and
more reliable communication systems to enable such processing and coordiretieerbthe man
and their machines, however, measurement of trustis paramount.

3 Trust in Information Processing

Several theories and working models of trust in automation have been proposed. Information
which is presented for decisieaiding is not uniformy} trusted and incorporated into situation
awareness. Three proposed i ncr eas-human intemstiens s , or 0st
include:Predictability, Dependability, and FaiffRe mpel,et al,, 1985). Participants progress through
these stagesver time in a relationship. The same was anticipated in htauémmation interactions,
either via training or experience. The main idea is that as trust develops, people will make decisions
based upon the trust that the system will continue to behavevisiheations as it has demonstrated in
the past. Building upon Rempelds stages, (Muir & Mor

Trust= Predictability + Dependability + Faith + Competence + Responsibility + Reliability

and further defined the construct @istrust which (1) can be caused by operator feeling that the
automation is undependable, unreliable, unpredictable, etc. and a (2) set of dimensions related to
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automation failures, which may cause distrust in automated systems (location of failure, causes of
failure or corruption, time patterns of failure).

Table 1, adapted below from (Muir &oray, 1996), depicts the quadrant of trust and distrust
behaviors with respect to good or poor quality of the automation. Basically, the outcome of a wrong
decision to trust the automation is worse than the outcome of a wrong decision to not trust the
automation. Hence, security is enforced to not trusta poor decision.

Operatord Quiality of the automation
allocation of function 6Goodbd
Trusts and uses the Appropriate Trus{optimize | False Trus{risk automated disastq
automation system performance)
Distrusts and rejects tf  False Distrus{lose benefits of Appropriate Distrus{optimize
automation automation, inc. workload) system performance)

Table 1: Trust, Distrust, and Mistrusfadapted from Muir and Moray996

Trust in the automation clearly impacts a user mental model of secure communications. Therefore,
dynamic models must be devised to account for different levels of attention, trust, and interactions in
Human in the Loop (H) and Human on the Loop (HOL) designs. A user must be given permission
to refine the assessment for final decision for validity and reliability of the information presented.
User Trust issues then are confidence (correct detection), security (impatggjjty (what you
know), dependability (timely), reliable (accurate), controllability, familiar (practice and training), and
consistent (reliable).

Trust in information processing involves many issues; however, here we focus on the development
of a cybedomain trust stack as shownhigure 4 The trust stack composes policies, trust authority,
collecting raw metrics and behavior analysis, leading to authentication and authorization, and then
secure communications. Similar to the information managemerdelnpolices are important to
determine whether data access is available. Likewise, sensor management gets access to raw metrics
(Blasch, 2004) that need to be analyzed for situation awareness. The problem not being full addressed
is the impeding result®r secure communications. In what follows, we discuss the main functions to
be provided by each layer in the trust stackshown in Figure 4.

| Polices Enforcement |

‘ Domain Trust Enforcement ‘

Collect Raw Behavior Analysis
Measurements (Situation Awareness)

‘ Authentication and Authorization ‘

Secure Communication

Figure 4. Trust Stack.

3.1 Secure Communications, Authentication, and Authorization

Secure communications is an important property to guarantee the confidentiality and integrity of
the messages used to evaluate trust in the system. Certificates are used to verify the identify of
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communicating endevices (Kaliski, 1993)The communicationchannel is encrypted using DES

(Data Encryption Standar@010Q in CFB64 (Cipher Feedback) mode. In this CFB mode, the first 8
bytes of the key generated used to encrypt the first block of data. This encrypted data is then used as a
key for the second blok. This process isepeated until the last block is encrypté@the DES is still

used in legacy virtual private networks (VPNs)d could benefit from a DDDAS trust analysis even

used with multiple protocolauthentication systems such as Kerberos.

Multiple protocols have been developed over the years for pasdwvesedl authentication,
biometric authentication, and remote user authentication. In order to evaluate the trust of different
entities with many users, multiple systems, and multiple domains, wenasthe use of remote user
authenticationRemote Authentication Didh User Service (RADIUS)Willens, et al, 2000)is a
famous client/server protocol to allow remote entitiescoonmunicate with a server to authenticate
remoteusers. RADIUSgives organiation ability to maintain user profiles in specificdatabase that
theremote servers share.

The Domain Trust Enforcement (DTE) agent performs the authorization process for tle end
end adaptive trust. Based on the results of the authentication process and the received trust level, the
DTE agent grants or denies authorization to access theunmso i.e., allow or deny the
communication between the different entities.

3.2 Collecting Raw Measurements

Much software, both commercial and open source, are available and provide important health and
security information, such as Nagios (Nass, 2009]Js Titformation can be used to extract metrics
that can be used to evaluate the trust of different entities. These metrics can be divided into multiple
categories based on their source: User, Application, Machine, Connection, or Security Software
Alerts. Inorder to evaluate the trust, the metrics need to be quantified and normalized (e.g., between 0
and 1) to a common scale. Table 2 shows a set of measured metrics and their quantification function
andFigure 5shows these categories with some example rsetric

Category Metric Quantification
ThOAOOXxT OA , AT COE U
o 0AOOx1 OA , AT cQE . |
User Password Strength [¥] % MBO— lakeded AN ?..OEAOAXEOA
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- |
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A [ Of O ARG / £ 1] 11 xAA &A
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- ZADOUROET T
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) 5 n(ieo . s
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AGEI| Ol . Ol AAO I £ (I PO
mn$ EOAAOAAA O0AAEAQ - AGEI O nN$E(
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Machine Shared Folders

c

Analyzer Integrity Check

ph T T TAOO
Anal Virus Al 5 e EOOO &1 OT A ET A AT AOI AT &6
nalyzer Irus Alerts ™ EOOO &I OTA ET Al AGAAOOAAI A

nx 1 O A& 01 A
Table 2: Examples of metric quantification

3.3 Behavior Analysis

Behavior analysisechniques applgtatistical and data mining techniquesdetermine the current
operating zone of thexecution environmer(situation awarenesand also projects behavior in the
near futureThe operating point@P) of anenvironmentan be defined as a point in ardimensional
space with respect to wellefined attributes. An acceptable operating zone can be defined by
combining the normal operating values for each attributeuAtime, the operating point moves from
one zone to another and that point might move to a zone wheeatirenmentdoes not meet itgust
andsecurity requirementdVe use these movements in the OP to adjust the trust value of the current
environmentas will be discussed in further detail in the Domain Trust Authority sectiyn.
continuouslyperforming behavior analysis of the environmene can then proactively predict and
detect the anomalous behaviors that might have been caused by malicicks. &tathermore, once
it is determined that the n v i r o ropeeating point is moving outside the normal zone, it will
adopt its trust value and thetetermine the appropriate proactive management techniques that can
bring back theenvironment situatioto a normal operating zone.

Location
User Has Password
Firmwares Version
Password Strength
OS5 Version
Days Since Last Password Change

Services Versions
Passed Time Since Last Login

0OS/Firmware/Services User
are updated or no | Number Of Authentication Failures
Available Disk Space \ \ Successful Logins and Logouts
Shared Folders Machine Incorrect Logins
Modification or Addition / Lock outs

of Administrator Accounts

. Has Digital Signature or Not
Change in Audit Policies
Developer Reputation

Guest Account Enabled or Not

Who manage the software

Security Softwares Application
installed and Enabled Who installed it
Attached interfacing Devices Updated or not
Antivirus Previously Performed Memory Violation or Not
Data Execution Prevention (DEP) Number of Hops
Behavior Analysis Security Software Alerts Connection Location of the Peer
Firewall Number of Discarded

or Error Packets
Vulnerability Analysis

Figure 5. Trust Metrics.
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3.4 Domain Trust Authority

DTA evaluates the entb-end trust over secure communications. It defines a tuple (machine,

application, user, data) to be an entity and all communications apwtit@ges has a certain context.

E. Blasch et al.

Thus authentication is conducted per entity. Every entity has a trust level associated with it. In order
he trust,
represents the disist and 1 represent the blind or full trust. The trust measurements for all entities are

t o

stored in an entity call Trust Authority. The NIST standard SPEDQNIST, 2010) is used and it
defines four levels of trust:

measur e

t

trust os

metrics

Lewel

Distrust

Low Trust

Moderate

High Trust

Trust Value

0.00

0.33

0.66

1.00

ar e

ntroducec

Initially, a risk and impact analysis is performed to quantify the impact of each component on the
overall operations of the network. Common Vulnerabilities and Exposures (CVE) and Common
Vulnerability ScoringSystem (CVSS) are used to evaluate the initial impact for both software and the
environment, and reputations of the users are used to assign their initial impacts. Based on the initial

impact analysis, the initial trust values for each entity is determifbd risk and impact analysis

perfor med

Systems and Organizatiols r e por t

i s

i n ¢ o Reconenenged Security iControls tfoh Fede il IlBoFmation

and resourcesThus the initial trusT can be viewed as an inverse ftino of the riskR:

T=1/R

Where the risk of an entityis a function of the impagnp:

Ri = imp; (confidentiality) 8 Pr imp; (confidentiality) +
imp; (integrity) 6 Primp; (integrity) + imp; (availability) 6 Primp ; (availability) @)

Ac cor di iskgmedsurs the lexent olwBidh
entitiesarethreatened by mumstancsor evens. The risk is a function aimpactand its probability
of occurrenceRisksarise from the loss of confidentiality, integritgndor avaiabilityof information

@

report.,

When a new entity is added, it has to register with the Mutual Authentication (MA) module and
then its initial trustvalue can be quantified according to Equations 1 and 2.

Verify Trust
When an entity communicates with another entity, an Autonomic Trust Management (ATM) agent
obtains the trust level of the entity that needs to interact with from the Trust Authority (TA), see

Figure 6 If the trust level of the remote entity is below thnimum required trust level set in the

policies, then the communication is dropped. By continuously checking with TA module, any

interacting entities will not be able to communicate if they do not meet théoeend trust policies.

Once the component st level is verified, they can proceed and interact securely using the secure
communications.
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Trust Mutual
Authority Authentication

| ATM, | | ATMg |

Entity 1 Entity 2

End-to-End Communication
Figure 6. Adaptive Endto-End Trust

Adaptive Trust

The trust value assigned to each component is not static and is updated continuously. The Trust
Authority module is the one responsible forerluating the trust at runtime. As mentioned in the
previous section, the trustis measured per entity and the trust levels are between 0 and 1.

TEI [ 1] 3

Each interaction between entities is governed by a co@exXhus, trust level for entities is
computed per context:

T(E, Oi [0,1] (4)

A Forgiveness FactoF, is assigned to provide an adaptive mechanis m for compromised entities
to start gaining trust after all existing vulnerabilities have been fixed. Based on the impact of the entity
on the overall operations, we can control the time it takes for that dotitgcover its trust level.
Monitoring, measuring, and quantifying trust metrics are required, and they are performed by the
ATM. M; will denote the collected trust metric, wheré the metric identifier. The functiom;() is a
guantifying function thareturns a measurement between 0 and 1 for the nhdric

The overall trust for an entity is computed using two types of trust: Hnsdfured trust and 2)
reputationmeasured trust. The saifeasured trusTy is the trust that is evaluated based twe t
measurement performed by the ATM agent that manages the entity. While the repunediEured
trust, T, s based on the trust metrics collected from peers based on a previous recent interaction with
the entity for which the trustis being-esaluatedThe Ts andT, are given by following equations:

Ts(E,C) = T(ATMe, ) 04 I (C) Om (M)
i=1
é; T(ATI\/|,-,C)OaL l; (C) Om (M) (5

1 i=1

Tp(E,C) =

Xl

i
The values of the metric weighl; for metrici is determined based on the feature selection
technique, where:
L

a Iic) =1 6
i=1
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Based on the context and the type of operations, theceadd trust is evaluated ugj three trust
evaluation strategies: Optimistic, Pessimistic, and Average. Th¢oesid trust for each strategy can
be evaluated as follows:

Trust Confidence Trust Bvaluation Strategy
Optimistic T(E, C) = max{Ts (E, C), Tp (E, C)}
Average T(E, C)=ave{Ts (E, C), Tr (E, C)}
Pessimistic T(E, C)=min{Ts (E, C), Tp (E, C)}

OnceT(E,C) is computed, then it is mapped to the nearest of trust level: (High, Moderate, Low,
and None).

The Trust Authority module continuously evaluates the trust foscahponents and their entities
whenever new metrics are obtained from the ATM agents that require an update to entity trust
evaluation above depending on the trust evaluation strategy. Various reasoning evaluation strategies
exst, such as that of BayenjeEvidential Reasoning, and Belief Functions (Blaszhal, 2013), that
can be used to evaluate trust.

In a DDDAS cyber environment, there are many levels of information fusion, but to build a
trustworthy DDDAS environment, we need to check the trusteh level of information fusion. The
Domain Trust Authority is the place to verify the trust of each entity passing information within the
DDDAS environment. When the trust level drops below certain threshold; the incoming data can be
dropped to enable sare communications. What followare the DDDAS theory, simulations,
measurements, and software analysis for Information fusion levels of cyber data, situation/behavior
assessment, information management, and userrefinement.

3.5 Bayes versus Evidential Reagan

A fundamental technique for data fusion is Bayes Rule. Recently, (Detait, 2012) has shown

t hat Dempsterds rule is consistent with probability
prior P(X) is uniform. However, whenthe(X) i s not wuniform, then Dempsteros
result. Both (Yen, 1986) and (Mahler, 1996) developed methods to account famniform priors.
Others have also tried to compare Bayes anmillential reasonindER) methods (Mahler, 2005,
Blasch,et al, 2013). Assuming that we have multiple measuremgmts{z,, Z,, &y} for cyber
detectiorD being monitored, Bayesian aB® methods are developed next.
3.6 Relating Bayes to Evidential Reasoning
Assuming conditional independence, one has the Baytsone
X12Zy) P(X]2Z) 1 P(X
PX 12, 1 25) = —PXIZ)PXI 2/ PO 0
a P(Xi|Zy) POG [ Z2) 1 P(Xi)
i=1
With no information fronZ; or Z,, then PX | Z3, Z;) = P(X). WithoutZ,, then PX | Z3, Z;) = P(X |
Z;) and withoutzy, then PX | 2y, Z5) = PX | Z) . Using Dezertoés formulation, t
can be expressed as a normalization coefficient:
mo(R) = 1- a P(Xi|Z) P(Xi |Z2) ®

Xi;XjI XiIXj
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Using this relation, then the total probability mass of the conflicting information is

PX|Zy 1 2Z5) = 1

1
TS 1 PX|Z;) P(X| Z2) ©)

whichcorresponds to Dempsterdéds rule of combination wus

priors. When the priordéds are not wuniform, then Demps
example, letmy (X) = P(X), my (X) =P(X | Z1), andm, (X) = P(X | Z2), then
_MmX) mX) mp(X) _ PX) P(X|Z) P(X|Z)
M) =T e ®) 9

N
a PXi) PXi|Z) PO |Z)
i=1
Thus, methods are needed to deal with -naiform priors andappropriately redistribute the
conflicting masses.

3.7 Proportional Conflict Redistribution

Recent advances in DS methods includezertSmarandache TheorfDSMT). DSmMT is an
extension to the DempstS8hafer method of evidential reasoning which has been deétaril
numerous papers and texdvances and applications of DSmT for information fusion (Collected
works), Vols. £3 (Dezert,et al, 2009) In (Dezert et al., 2002)introduced the methods for the
reasoning and ipresented the hyper powset notation for DSmTDezert, et al, 2003) Recent
applications include the DSmT Proportional ConflRedistribution rule 5 (ER5) applied to target
tracking (Blasch, 2013).

The key contributionf DSmT are the redistributits of masses such that no refinement of the

frame Q is possible unless asges of constraints are knowk.o r e x a mp | nodel (Shafear,f er 6 s
1976) is the most constimed DSm hybrid model in DSmTSi nce Shafer6s model, aut
continued to refine 1 method to more precisely address the combination of conflicting beliefs
(Josanget al.,, 2006) and generalization of the combination ru{@maradachegt al., 2005, Daniel,
2006). An adaptive combination ruléFlorea,et al., 2006) &ad rules for quantitive and qualitative
combinations(Martin, 2008) have been proposdRecent examples for sensor applications include
electronic support measurg®jiknavorian et al., 2010),physiological monitoring sensofseg et al,
2010), and seismiacoustic serisg (Blasch et al., 2011).

Here we usehe Proportional Conflict Redistributionule no. 5 (PCR5) We replace Smetsod |
(Smets, 2005py the more effectivé® CR5to cyber detectiorprobabilities. All details, judfications
with examples on PQRfusion rules and DSrtransformatios can be found in the DSmT compiled
texts (Dezert,et al., 2009Vols. 2 & 3. A comparison of the methods is showrHigure 7

" Note: PCR used here is from information fusion technology and not the a Platform Configuration Register (PCR) of the
Trusted Platform Module (TPM) hardware technology.
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Decision Level

Conflict
Assessment
(PCR5)

Integrity Level

Set Assessment
(DSmC)

Sources Level

Evidential Reasoning

T DSmT Dempster T Bayes
. . Shafer
Proportional Conflict
Redistribution
1
Integrity Constraints
onD
T_ Conjunctive Consensus
on hyper-powerset p®
qy(®) - aul*) my(e) ... my(e)
Qualitative bba Quantitative bba
T 1 Z() - 2,05)
Subjective T/ Objective Conditional Probabilities

Figure 7. Comparison oBayesian, Dempste3hafer, and PCR5 Fusion Thearie

E. Blasch et al.

In the DSmT framework, the PCRis used generally to combine the basic belief assignment

(bba)bs.

PCRS5

transfers

t he

conflicti

ng

mas s

proportionally to their individual masses, so that the specificity @& thformation is entirely

preserved in this fusion process. Imf(.) andmy(.) be two independebtb a 6 s ,

t hen

t he

defined as follows (seBezert,et al, 2009,Vol. 2 for full justification and examplesibcrs(A) = 0
and" X1 2°\{A}, whereA is the null setan&® is the power set:

Mpcrs(X) =

X1; Xo1 2
X11 Xo=X

A me)rmoe + a

Q

Xol 2

@My (Xq) 2 mp(Xo)

m(Xa) M(Xo) * g

Emy(Xe) + mp(X2)

X21 X=A

my(Xq) +mp(Xo) U

(11

wherel is the interesting andll denominators in the equation above are different from zero. If a
denominator is zero, that fraction is discarded. Additional propedies etensiors of PCR5 for
bMod. 2 & B) with éxampries gndresuldlr t

combiningqualt at i v e

bbabs

propositions/sets are in a canonical form.

3.8 Example of DDDAS Cyber Trust Analysis

In this example, we assume that policies are acceptedhatidhte trust stack must determine
whether the dynamic data is trustworthy. The application system collects raw measurements on the
data intrusion (such as denial of service attacks) and situation awareness is needed. Conventional
information fusion procesng would include Bayesian analysis to determine the state of the attack.

However, here we use the PCR5 rule which distributes the conflicting information over the partial

can

states.Figure 8shows the results for a normal system being attacked and thesuliffenethods
(Bayes, DS, and PCR5) to access the dynamic attack. Trust is then determined with percent
improvement in analysis. Since the cyber classification of attack versus no attack is not consistent,
there is some conflict in the processing of the sogament data going from an measurements of
attack and vice versa. The constant changing of measurements requires acknowledgment of the
change and data conflict as measured using the PCR5 method.
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Figure 8. Results of Bayesian, Dempst®mafer, and PCR5 Fusion Theories for trust.

The improvement of PCR5 over Bayes is shown in Figure 8 and compared with the modest
improvement from DS. The average performance improvement of PCR5 is 46% and DS is 2%, which
is data and application dependent.h&d comparing the results, it can be seen that when a system
goes from a normal to an attack state, PCR5 responds quicker in analyzing the attack, resulting in
maintaining trust in the decision. Such issues of data reliability, statistical credibilityapgolication
survivability all contribute to the presentation of information to an applicdimsed user. While the
analysis is based on behavioral situation awareness, it is understood that polices and secure
communications can leverage this informatifor domain trust analysis and authentication and
authorization that can map measurements to software requirements.

3.9 Policies Enforcement

Policies are an important component of cyber trust (Blasch, 2012) as shduwguine 2 As an
example, a policy isadministered for retrieval of information. Policy information determines the
attributes for decisions. Determining the decision leads to enforcement. Such a decision is based on
trust processing from which effective enforcement can support secure conmtiqursica

Policy Administrator
Analyst

l System Administrator
Policy %‘
Administration .
Point (PAP) ‘P_-. t

Attributes

Policy . Policy . Policy
Retrieval FelEes Decision ~ [¢—| Attributes Information
Point (PRP) Point (PDP) Point (PIP)

— ¥
Attributes.

Figure 9. Policy-Based Fusion of Information requiring Trust (Blasch, 2012)

There are many possible information fusion strategies to enable data access from policies. Here we
demonstrate an analysis of Bayesian versus evidem@eloning for determining cyber situation
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