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Abstract 

Information fusion includes signals, features, and decision-level analysis over 

various types of data including imagery, text, and cyber security detection.  With the 

maturity of data processing, the explosion of big data, and the need for user acceptance; 

the Dynamic Data-Driven Application System (DDDAS) philosophy fosters insights 

into the usability of information systems solutions.  In this paper, we exp lore a notion of 

an adaptive adjustment of secure communication trust analysis that seeks a balance 

between standard static solutions versus dynamic-data driven updates. A use case is 

provided in determin ing trust for a cyber security scenario exp loring comparisons of 

Bayesian versus evidential reasoning for dynamic security detection updates. Using the 

evidential reasoning proportional conflict redistribution (PCR) method, we demonstrate 

improved trust for dynamically changing detections of denial of service attacks.  

1 Introduction 

Information fusion (Blasch, et  al., 2012) has a well-documented following of different methods, 

processes, and techniques emerging from control, probability, and communication theories. 

Information fusion systems designs require methods for big data analysis, secure communications, 

and support to end users. Current in formation fusion systems use probability, estimation, and signal 

processing. Extending theses techniques to operational needs requires an assessment of some of the 

fundamental assumptions such as secure communications over various data, applications, and 

systems. Specifically, the key focus of this paper is based on the question of measuring trust in static 

versus dynamic information fusion systems. 

Static versus dynamic information fusion comes from three perspectives such as data, models, and 

processing. As related to information fusion techniques, many studies exist on centralized versus 

distributed processing, single versus mult iple models, and stovepipe versus mult i-modal data.  In each 

case, static informat ion fusion rests in centralized processing from single model estimation over a 
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single source of data. On the other extreme is d istributed processing, using multiple-models over 

multi-modal data; which in reality is supposed to cover the entire gamut of big  data solutions captured 

in large-scale systems designs.  In reality, with such an ambit ious goal, there are always fundamental 

assumptions that tailor the system design to the user needs. For example, a system could be designed 

to capture all image data being collected from surveillance sensors; however filtering collections over 

a specific area, for a designated time internal, at a given frequency helps to refine answers to user 

requests. Thus, as a user selects the details of importance, responses should be accessible, complete, 

and trustworthy. 

Dynamic information fusion is a key analysis of the paper of which we focus on trust. If a machine 

is processing all the data, then time and usability constraints cannot be satisfied. Thus, either the user 

or the machine must determine the appropriate set of data, models, and processing that is needed for a 

specific applicat ion. Trust analysis is required to determine security and reliability constraints, and 

DDDAS provides a fresh look at the balance between static and dynamic information fusion.  In this 

paper, we explore the notions of dynamic information fusion towards decision making as cyber 

detections change. 

In Section 2 we overview informat ion fusion and DDDAS. Section 3 d iscusses the notions of trust 

as a means to balance between information fusion and dynamic data detections. Section 4 compares 

Bayesian versus evidential reasoning. Sect ion 5 provides a use-case for analysis for cyber trust and 

Section 6 provides conclusions..  

2 Information Fusion and DDDAS 

Information fusion and DDDAS overlap in many areas such as data measurements, statistical 

reasoning, and software development for various applications. Recently, there is an interest in both 

communit ies to address big data, software structures, and user applications. The intersection of these 

areas includes methods of information management (Blasch, 2006) in assessing trust in data access, 

dynamic processing, and distribution for applications-based end users. 

2.1 Information Fusion  

The Data Fusion Information Group (DFIG) model, shown in Figure 1, provides the various 

attributes of an information fusion systems design. Informat ion fusion concepts are divided between 

Low-level Informat ion Fusion (LLIF) and High-level Information Fusion (HLIF) (Blasch, et al., 

2012). LLIF (L0-1) composes data registration (Level 0 [L0]) and exp licit ob ject assessment (L1) 

such as an aircraft  location and identity (Yang, 2009). HLIF (L2-6) composes much of the open 

discussions in the last decade. The levels, to denote processing, include situation (L2) and impact (L3) 

assessment with resource (L4), user (L5) (Blasch, 2002), and mission (L6) refinement (Blasch, 2005). 

Here we focus on Level 5 fusion by addressing cyber security trust in systems design. 
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Figure 1. DFIG Information Fusion model (L = Information Fusion Level). 

 
Data access for information fusion requires an information management (IM) model of the enterprise 
architecture, as shown in Figure 2. The IM model illustrates the coordination and flow of data through 

the enterprise with the various layers (Blasch, et al., 2012).  

People or autonomous agents interact with the managed information enterprise environment by 
producing and consuming informat ion. Various actors and their activit ies/services within an IM 

enterprise surround the IM model that transforms data into informat ion. Within  the IM model, there 
are various services that are needed to process the managed information objects (MIOs). Security is 

the first level of interaction between users and data. 

 

Figure 2. Information Management (IM) Model. 

A set of service layers are defined that use artifacts to perform specific services. An art ifact is a 

piece of information that is acted upon by a service or that influences the behavior of the service (e.g., 

a policy). The service layers defined by the model are: Security, Workflow, Quality of Service (QoS), 

Transformat ion, Brokerage, and Maintenance. These services are intelligent agents that utilize the 
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informat ion space within the architecture, such as cloud computing and machine analytics. Access to 

the data requires secure communications which is dynamic, data-type driven, and application specific. 

2.2 Dynamic Data Driven Application Systems (DDDAS) 

DDDAS is focused on applications modeling (scenarios), mathematical and statistical algorithms  

(theory), measurement systems, and systems software as shown in Figure 3. For a systems application, 

user mission needs drive data access over the scenarios. The available data is processed from 

measurements to information using theoretical princip les. The data-driven results are presented to the 

user through visualizat ions; however the trust in the data is compounded by data quality, the model 

fidelity, and systems availability of which software is an integral part to a systems application. 

 
Figure 3. DDDAS Aligned with Information Fusion. 

 

Using a cyber example for DDDAS, the application is secure data communications to meet  

mission needs (L6). While not a one-to-one mapping, it  can be assumed that data management, driven 

by scenarios, identifies cyber threat attacks (L3) such as denial of service attacks. The theory and 

measurements come from the models of normal behavior (L1) which use computational methods to 

support cyber situation awareness (L2) visualizat ion. The user (L5) interacts with the machine through 

data management (L4), as new measurements arrive. Current research seeks distributed, faster, and 

more reliable communicat ion systems to enable such processing and coordination between the man 

and their machines, however, measurement of trust is paramount. 

3 Trust in Information Processing 

Several theories and working models of trust in automation have been proposed. Informat ion 

which is presented for decision-aid ing is not uniformly trusted and incorporated into situation 

awareness. Three proposed increasing levels, or óstages of trustô, for human-human interactions 

include: Predictability, Dependability, and Faith (Rempel, et al., 1985). Partic ipants progress through 

these stages over time in a relationship. The same was anticipated in human-automat ion interactions, 

either via training or experience. The main idea is that as trust develops, people will make decisions 

based upon the trust that the system will continue to behave in new situations as it has demonstrated in 

the past. Building upon Rempelôs stages, (Muir & Moray, 1996) postulated that  

 

Trust = Predictability + Dependability + Faith + Competence + Responsibility + Reliability 
 

and further defined the construct of Distrust: which (1) can be caused by operator feeling that the 

automation is undependable, unreliable, unpredictable, etc. and a (2) set of dimensions related to 
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automation failures, which may cause distrust in automated systems (location of failure, causes of 

failure or corruption, time patterns of failure). 
 

Table 1, adapted below from (Muir & Moray, 1996), depicts the quadrant of trust and distrust 

behaviors with respect to good or poor quality of the automation. Basically, the outcome of a wrong 

decision to trust the automation is worse than the outcome of a wrong decision to not trust the 

automation.  Hence, security is enforced to not trust a poor decision. 

 

 

 

Operatorôs trust & 

allocation of function 

Quality of the automation 

óGoodô                      óPoorô 

Trusts and uses the 

automation 

Appropriate Trust (optimize 

system performance) 

False Trust (risk automated disaster) 

Distrusts and rejects the 
automation 

False Distrust (lose benefits of 
automation, inc. workload) 

Appropriate Distrust (optimize 
system performance) 

 

Table 1: Trust, Distrust, and Mistrust, (adapted from Muir and Moray, 1996) 

Trust in the automation clearly impacts a user mental model of secure communicat ions. Therefore, 

dynamic models must be devised to account for different levels of attention, trust, and interactions in 

Human in the Loop (HIL) and Human on the Loop (HOL) designs. A user must be given permission 

to refine the assessment for final decision for valid ity and reliability of the informat ion presented.  

User Trust issues then are confidence (correct detection), security (impacts), integrity (what you 

know), dependability (timely), reliable (accurate), controllability, familiar (practice and train ing), and 

consistent (reliable). 

Trust in information processing involves many issues; however, here we focus on the development 

of a cyber domain trust stack as shown in Figure 4. The trust stack composes policies, trust authority, 

collecting raw metrics and behavior analysis, leading to authentication and authorization, and then 

secure communications. Similar to the information management model, polices are important to 

determine whether data access is available. Likewise, sensor management gets access to raw metrics 

(Blasch, 2004) that need to be analyzed for situation awareness. The problem not being full addressed 

is the impeding results for secure communications. In what follows, we discuss the main functions to 

be provided by each layer in the trust stack shown in Figure 4. 

 

 
 

Figure 4. Trust Stack. 

3.1 Secure Communications, Authentication, and Authorization 

Secure communications is an important property to guarantee the confidentiality and integrity of 

the messages used to evaluate trust in the system. Certificates are used to verify the identify of 
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communicat ing end-devices (Kaliski, 1993). The communicat ion channel is encrypted using DES 

(Data Encryption Standard, 2010) in CFB64 (Cipher Feedback) mode. In this CFB mode, the first 8 

bytes of the key generated used to encrypt the first block of data. Th is encrypted data is then used as a 

key for the second block. This process is repeated until the last block is encrypted. The DES is still 

used in legacy virtual private networks (VPNs) and could benefit from a DDDAS trust analysis even 

used with multiple protocol authentication systems such as Kerberos. 

Multiple protocols have been developed over the years for password-based authentication, 

biometric authentication, and remote user authentication. In order to evaluate the trust of different 

entities with many users, mult iple systems, and mult iple domains, we assume the use of remote user 

authentication. Remote Authentication Dial-In  User Serv ice (RADIUS) (Willens, et al, 2000) is a 

famous client/server protocol to allow remote entities to communicate with a server to authenticate 

remote users. RADIUS gives organization ability to maintain user profiles in a specific database that 

the remote servers share.  

The Domain Trust Enforcement (DTE) agent performs the authorization process for the end-to-

end adaptive trust. Based on the results of the authentication process and the received trust level, the 

DTE agent  grants or denies authorizat ion to access the resources, i.e., allow or deny the 

communication between the different entities.   

3.2 Collecting Raw Measurements  

Much software, both commercial and open source, are available and provide important health and 

security information, such as Nagios (Nass, 2009). This information can be used to extract metrics 

that can be used to evaluate the trust of different entities. These metrics can be divided into mult iple 

categories based on their source: User, Application, Machine, Connection, or Security Software 

Alerts. In order to evaluate the trust, the metrics need to be quantified and normalized (e.g., between 0 

and 1) to a common scale. Table 2 shows a set of measured metrics and their quantification function 

and Figure 5 shows these categories with some example metrics. 

 
 

Category Metric Quantification 

User Password Strength ὗ

πȟ  0ÁÓÓ×ÏÒÄ ,ÅÎÇÔÈ ψ                                                     

πȢρ πȢωϽ
0ÁÓÓ×ÏÒÄ ,ÅÎÇÔÈ

-ÁØÉÍÕÍ 0ÁÓÓ×ÏÒÄ ,ÅÎÇÔÈ
ȟ /ÔÈÅÒ×ÉÓÅ

 

User Days since last password change ὗ

πȟ  ΠÄÁÙÓ-ÁØÉÍÕÍ .ÕÍÂÅÒ /Æ $ÁÙÓ            

ρ
ΠÄÁÙÓ

-ÁØÉÍÕÍ .ÕÍÂÅÒ ÏÆ $ÁÙÓ
ȟ /ÔÈÅÒ×ÉÓÅ

 

User 
Number of authentication 

failures 
ὗ

πȟ  ΠÆÁÉÌÕÒÅÓ -ÁØÉÍÕÍ .ÕÍÂÅÒ /Æ !ÌÌÏ×ÅÄ &ÁÉÌÕÒÅÓ     

ρ
ΠÆÁÉÌÕÒÅÓ

-ÁØÉÍÕÍ .ÕÍÂÅÒ /Æ !ÌÌÏ×ÅÄ &ÁÉÌÕÒÅÓ
ȟ /ÔÈÅÒ×ÉÓÅ

 

User Lock Outs ὗ
πȟ  Π,ÏÃË /ÕÔÓ -ÁØÉÍÕÍ .ÕÍÂÅÒ /Æ !ÌÌÏ×ÅÄ ,ÏÃË /ÕÔÓ

ρ
Π,ÏÃË /ÕÔÓ

-ÁØÉÍÕÍ .ÕÍÂÅÒ /Æ !ÌÌÏ×ÅÄ ,ÏÃË /ÕÔÓ
ȟ /ÔÈÅÒ×ÉÓÅ

 

Application Developer Reputation ὗ  
2ÅÐÕÔÁÔÉÏÎ

-ÁØÉÍÕÍ 2ÅÐÕÔÁÔÉÏÎ
 

Application Who manages the software ὗ
ρȟ 'ÌÏÂÁÌ !ÄÍÉÎÓÔÒÁÔÏÒ     
πȢυȟ  ,ÏÃÁÌ !ÄÍÉÎÉÓÔÒÁÔÏÒ
πȟ .Ï !ÄÍÉÎÉÓÔÒÁÔÏÒ          

 

Connection Number of hops ὗ

πȟ  Π(ÏÐÓ -ÁØÉÍÕÍ .ÕÍÂÅÒ /Æ (ÏÐÓ        

ρ
Π(ÏÐÓ

-ÁØÉÍÕÍ .ÕÍÂÅÒ ÏÆ (ÏÐÓ
ȟ /ÔÈÅÒ×ÉÓÅ

 

Connection Number of discarded Packets ὗ
πȟ Π$ÉÓÃÁÒÄÅÄ 0ÁÃËÅÔ -ÁØÉÍÕÍ Π$ÉÓÃÁÒÄÅÄ 0ÁÃËÅÔ            

ρ
Π$ÉÓÃÁÒÄÅÄ 0ÁÃËÅÔ

-ÁØÉÍÕÍ Π$ÉÓÃÁÒÄÅÄ 0ÁÃËÅÔ
ȟ /ÔÈÅÒ×ÉÓÅ                        

 

Machine Firmware version ὗ
ρȟ 5Ð ÔÏ ÄÁÔÅ                 
πȢυȟ ρ 6ÅÒÓÉÏÎ "ÅÈÉÎÄ
πȟ /ÔÈÅÒ×ÉÓÅ                
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Machine Shared Folders ὗ
ρȟ .Ï 3ÈÁÒÅÄ &ÏÌÄÅÒÓ                         
πȢυȟ 3ÈÁÒÅÄ 5ÓÅÒ &ÏÌÄÅÒÓ                  
πȟ 3ÈÁÒÅÄ 3ÙÓÔÅÍ &ÏÌÄÅÒÓ                

 

Analyzer Integrity Check ὗ
ρȟ .Ï 0ÒÏÂÅÌÍ                                              
πȢυȟ 0ÒÏÂÌÅÍ ÉÎ ÕÓÅÒ ÄÁÔÁ                          
πȟ 0ÒÏÂÌÅÍ ÉÎ ÓÙÓÔÅÍ ÉÎÔÅÇÒÉÔÙ                

 

Analyzer Virus Alerts ὗ

ρȟ .Ï !ÌÅÒÔ                                             
πȢυȟ 6ÉÒÕÓ &ÏÕÎÄ ÉÎ Á ÄÏÃÕÍÅÎÔ      
πȢςυȟ 6ÉÒÕÓ &ÏÕÎÄ ÉÎ ÁÎ ÅØÅÃÕÔÁÂÌÅ
πȟ ×ÏÒÍ ÆÏÕÎÄ                                      

 

Table 2: Examples of metric quantification 

3.3 Behavior Analysis 

Behavior analysis techniques apply statistical and data min ing techniques to determine the current 

operating zone of the execution environment (situation awareness) and also project its behavior in  the 

near future. The operating point (OP) of an environment can be defined as a point in an n-dimensional 

space with respect to well-defined attributes. An acceptable operating zone can be defined by 

combin ing the normal operating values for each attribute. At runtime, the operating point moves from 

one zone to another and that point might move to a zone where the environment does not meet its trust 

and security requirements. We use these movements in the OP to adjust the trust value of the current 

environment as will be discussed in further detail in the Domain Trust Authority section. By 

continuously performing behavior analysis of the environment, we can then proactively  predict  and 

detect the anomalous behaviors that might have been caused by malicious attacks. Furthermore, once 

it is determined that the environmentôs operating point is moving outside the normal zone, it will 

adopt its trust value and then determine the appropriate proactive management techniques that can 

bring back the environment situation to a normal operating zone.  
 

 
Figure 5. Trust Metrics. 
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3.4 Domain Trust Authority 

DTA evaluates the end-to-end trust over secure communicat ions. It defines a tuple (machine, 

application, user, data) to be an entity and all communications among entities has a certain context. 

Thus authentication is conducted per entity. Every entity has a trust level associated with it. In order 

to measure the trust, trustôs metrics are introduced, and they take values between 0 and 1. Where 0 

represents the distrust and 1 represent the blind or full trust. The trust measurements for all entities are 

stored in an entity call Trust Authority. The NIST standard SP 800-53 (NIST, 2010) is used and it 

defines four levels of trust: 

 

Level Distrust Low Trust Moderate High Trust 

Trust Value 0.00 0.33 0.66 1.00 

 

Initially, a risk and impact analysis is performed to quantify the impact of each component on the 

overall operations of the network. Common Vulnerab ilities and Exposures (CVE) and Common 

Vulnerability Scoring System (CVSS) are used to evaluate the init ial impact for both software and the 

environment, and reputations of the users are used to assign their init ial impacts. Based on the initial 

impact analysis, the initial trust values for each entity is determined. The risk and impact analysis 

performed is in consistence with the NIST ñRecommended Security Controls for Federal Informat ion 

Systems and Organizationsò report. According to the NIST report, risk measures the extent to which 

entities are threatened by circumstances or events. The risk is a function of impact and its probability  

of occurrence. Risks arise from the loss of confidentiality, integrity, and/or availab ility of informat ion 

and resources.  Thus the initial trust T can be viewed as an inverse function of the risk R: 
 

 T = 1 / R (1) 
 

Where the risk of an entity i is a function of the impact imp: 
 

R i = imp i (confidentiality) ǒ Pr imp i (confidentiality) +  

            imp i (integrity) ǒ Pr imp i (integrity) +  imp i (availability) ǒ Pr imp i (availability)  (2) 

 

When a new entity is added, it has to register with the Mutual Authentication (MA) module and 

then its initial trust value can be quantified according to Equations 1 and 2. 
 

Verify Trust 

When an entity communicates with another entity, an Autonomic Trust Management (ATM) agent 

obtains the trust level of the entity that needs to interact with from the Trust Authority (TA), see 

Figure 6.  If the trust level of the remote entity is below the minimum required trust level set in the 

policies, then the communication is dropped. By continuously checking with TA module, any 

interacting entities will not be able to communicate if they do not meet the end-to-end trust policies. 

Once the component trust level is verified, they can proceed and interact securely using the secure 

communications. 
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Figure 6. Adaptive End-to-End Trust 

Adaptive Trust 

The trust value assigned to each component is not static and is updated continuously. The Trust 

Authority module is the one responsible for re-evaluating the trust at runtime. As mentioned in the 

previous section, the trust is measured per entity and the trust levels are between 0 and 1. 

 

 T (E) Í [0, 1] (3) 

                                                           
 

Each interaction between entities is governed by a context C. Thus, trust level for entities is 

computed per context: 

 T (E, C) Í [0, 1]  (4)  
 

A Forgiveness Factor, F, is assigned to provide an adaptive mechanis m for compromised entities 

to start gaining trust after all existing vulnerabilit ies have been fixed. Based on the impact of the entity 

on the overall operations, we can control the time it takes for that entity to recover its trust level. 

Monitoring, measuring, and quantifying trust metrics are required, and they are performed by the 

ATM. Mi will denote the collected trust metric, where i  is the metric identifier. The function mi() is a 

quantifying function that returns a measurement between 0 and 1 for the metric Mi.  

The overall trust for an entity is computed using two types of trust: 1) self-measured trust and 2) 

reputation-measured trust. The self-measured trust Ts is the trust that is evaluated based on the 

measurement performed by the ATM agent that manages the entity. While the reputation-measured 

trust, Tp is based on the trust metrics collected from peers based on a previous recent interaction with 

the entity for which the trust is being re-evaluated. The Ts and Tp are given by following equations: 
 

T S (E , C)  =  T (ATM E, C) Ö ä
i = 1

 L

    Ii (C) Ö  mi (Mi) 

 T P (E , C)  =  
1

K
    ä

j  = 1

 K

    T (ATM j, C) Ö ä
i = 1

 L

    Ii (C) Ö  mi (Mi) (5) 

 

The values of the metric weight Ii for metric i is determined based on the feature selection 

technique, where: 
 

 ä
i = 1

 L

    Ii (C)   =  1 (6) 
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Based on the context and the type of operations, the end-to-end trust is evaluated using three trust 

evaluation strategies: Optimistic, Pessimistic, and Average. The end-to-end trust for each strategy can 

be evaluated as follows: 

 

Trust Confidence  Trust Evaluation Strategy 

Optimistic T(E, C) = max {TS (E, C), TP (E, C)}  

Average T(E, C) = ave {TS (E, C), TP (E, C)}  

Pessimistic T(E, C) = min {TS (E, C), TP (E, C)}  

 

Once T(E,C) is computed, then it is mapped to the nearest of trust level: (High, Moderate, Low, 

and None). 

The Trust Authority module continuously evaluates the trust for all components and their entities 

whenever new metrics are obtained from the ATM agents that require an update to entity trust 

evaluation above depending on the trust evaluation strategy. Various reasoning evaluation strategies 

exist, such as that of Bayesian, Evidential Reasoning, and Belief Functions (Blasch, et al, 2013), that 

can be used to evaluate trust. 

In a DDDAS cyber environment, there are many levels of information fusion, but to build a 

trustworthy DDDAS environment, we need to check the trust of each level o f informat ion fusion. The 

Domain Trust Authority is the place to verify the trust of each entity passing information with in the 

DDDAS environment. When the trust level drops below certain  threshold; the incoming data can be 

dropped to enable secure communications. What follows are the DDDAS theory, simulations, 

measurements, and software analysis for Information fusion levels of cyber data, situation/behavior 

assessment, information management, and user refinement. 

3.5 Bayes versus Evidential Reasoning 

A fundamental technique for data fusion is Bayes Rule. Recently, (Dezert, et al., 2012) has shown 

that Dempsterôs rule is consistent with probability calculus and Bayesian reasoning if and only if the 

prior P(X) is uniform. However, when the P(X) is not uniform, then Dempsterôs rule gives a different 

result.  Both (Yen, 1986) and (Mahler, 1996) developed methods to account for non-uniform priors. 

Others have also tried to compare Bayes and evidential reasoning (ER) methods (Mahler, 2005, 

Blasch, et al., 2013). Assuming that we have mult iple measurements Z = {Z1, Z2, é, ZN} for cyber 

detection D being monitored, Bayesian and ER methods are developed next. 

3.6 Relating Bayes to Evidential Reasoning 

Assuming conditional independence, one has the Bayes method: 
 

 P(X | Z1  1  Z2)  =  
P(X | Z1) P(X | Z2) / P(X)

  ä
i = 1

 N

    P(Xi | Z1) P(Xi | Z2) / P(X i)

 (7) 

 

With no information from Z1 or Z2, then P(X | Z1, Z2) = P(X). Without Z2, then P(X | Z1, Z2) = P(X | 

Z1) and without Z1, then P(X | Z1, Z2) = P(X | Z2). Using Dezertôs formulation, then the denominator 

can be expressed as a normalization coefficient: 

 m12 (Å)   =   1  -  ä
X i  ; X j  |  X i  1 X j

 

    P(Xi | Z1) P(Xi | Z2)  (8) 
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Using this relation, then the total probability mass of the conflicting information is  
 

 P(X | Z1  1  Z2)  =   
1

 1  -  m12 (Å)
  ¶  P(X | Z1) P(X | Z2)  (9) 

 

which corresponds to Dempsterôs rule of combination using Bayesian belief masses with uniform 

priors. When the priorôs are not uniform, then Dempsterôs rule is not consistent with Bayesô Rule.  For 

example, let m0 (X) = P(X), m1 (X) = P(X | Z1), and m2 (X) = P(X | Z2), then  

 

 m(X)   =  
m0 (X)  m1 (X)  m2 (X)

 1 -   m012 (Å) 
   =   

P(X)   P(X | Z1)   P(X | Z2) 

 ä
i = 1

 N

    P(X i)   P(Xi | Z1)   P(Xi | Z2) 

 (10) 

Thus, methods are needed to deal with non-uniform priors and appropriately redistribute the 

conflicting masses. 

3.7 Proportional Conflict Redistribution 

Recent advances in DS methods include Dezert-Smarandache Theory (DSmT). DSmT is an 

extension to the Dempster-Shafer method of evidential reasoning which has been detailed in 

numerous papers and texts: Advances and applications of DSmT for information fusion (Collected 

works), Vo ls. 1-3 (Dezert, et al., 2009). In (Dezert, et al., 2002) introduced the methods for the 

reasoning and in presented the hyper power-set notation for DSmT (Dezert, et al., 2003). Recent 

applications include the DSmT Proportional Conflict  Redistribution ru le 5 (PCR5) applied to  target 

tracking (Blasch, 2013).  

The key contributions of DSmT are the redistributions of masses such that no refinement of the 

frame Q is possible unless a series of constraints are known. For example, Shaferôs model (Shafer, 

1976) is the most constrained DSm hybrid model in DSmT. Since Shaferôs model, authors have 

continued to refine the method to more precisely address the combination of conflict ing beliefs 

(Josang, et al., 2006) and generalizat ion of the combination ru les (Smaradache, et al., 2005, Daniel, 

2006). An adaptive combination rule (Florea, et  al., 2006) and rules for quantitative and qualitative 

combinations (Martin, 2008) have been proposed. Recent examples for sensor applications include 

electronic support measures, (Djiknavorian, et al., 2010), physiological monitoring sensors (Lee, et al., 

2010), and seismic-acoustic sensing (Blasch, et al., 2011).  

Here we use the Proportional Conflict Redistribution rule no. 5 (PCR5)
*
. We replace Smetsô rule 

(Smets, 2005) by the more effective PCR5 to cyber detection probabilities. All details, justifications 

with examples on PCRn fusion rules and DSm transformations can be found in the DSmT compiled 

texts (Dezert, et al., 2009 Vols. 2 & 3). A comparison of the methods is shown in Figure 7.  
 

                                                                 
*
 Note: PCR used here is from information fusion technology and not the a Platform Configuration Register (PCR) of the 

Trusted Platform Module (TPM) hardware technology. 
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Figure 7. Comparison of Bayesian, Dempster-Shafer, and PCR5 Fusion Theories 

In the DSmT framework, the PCR5 is used generally to combine the basic belief assignment 

(bba)ôs. PCR5 transfers the conflicting mass only to the elements involved in the conflict and 

proportionally to their indiv idual masses, so that the specific ity of the informat ion is entirely  

preserved in this fusion process. Let m1(.) and m2(.) be two independent bbaôs, then the PCR5 rule is 

defined as follows (see Dezert, et al., 2009, Vo l. 2 for fu ll justification and examples): mPCR5(Å) = 0 

and "X Í 2
Q
 \ {Å} , where Å is the null set and 2

Q 
is the power set: 

mPCR5 (X)  =  ä
X1; X2 Í 2 

Q

X1 1 X2 = X

 

   m1(X1) + m2(X2)     + ä
X2 Í 2 

Q

X2 1 X = Å

 

       ê
è

ú
ø m1(X1) 

2 m2(X2)

 m1(X1) + m2(X2)
  +  

 m1(X1) m2(X2) 
2

 m1(X1) + m2(X2)
  

 

`(11)

 

 

where 1 is the interesting and all denominators in the equation above are different from zero. If a 

denominator is zero, that fraction is discarded. Additional properties and extensions of PCR5 for 

combin ing qualitative bbaôs can be found in (Dezert, 2009, Vo l. 2 & 3) with examples and results. All 

propositions/sets are in a canonical form. 

3.8 Example of DDDAS Cyber Trust Analysis 

In this example, we assume that polic ies are accepted and that the trust stack must determine 

whether the dynamic data is trustworthy. The application system collects raw measurements on the 

data intrusion (such as denial o f service attacks) and situation awareness is needed. Conventional 

informat ion fusion processing would include Bayesian analysis to determine the state of the attack. 

However, here we use the PCR5 rule which distributes the conflicting information over the partial 

states. Figure 8 shows the results for a normal system being attacked and the different methods 

(Bayes, DS, and PCR5) to access the dynamic attack. Trust is then determined with percent 

improvement in analysis. Since the cyber classification of attack versus no attack is not consistent, 

there is some conflict in the processing of the measurement data going from an measurements of 

attack and vice versa.  The constant changing of measurements requires acknowledgment of the 

change and data conflict as measured using the PCR5 method. 
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Figure 8. Results of Bayesian, Dempster-Shafer, and PCR5 Fusion Theories for trust. 

The improvement of PCR5 over Bayes is shown in Figure 8 and compared with the modest 

improvement from DS. The average performance improvement of PCR5 is 46% and DS is 2%, which 

is data and application dependent.  When comparing the results, it can be seen that when a system 

goes from a normal to an attack state, PCR5 responds quicker in analyzing the attack, resulting in 

maintaining t rust in the decision.  Such issues of data reliability, statistical credib ility, and applicat ion 

survivability all contribute to the presentation of information to an application-based user.  While the 

analysis is based on behavioral situation awareness, it is understood that polices and secure 

communicat ions can leverage this information for domain trust analysis and authentication and 

authorization that can map measurements to software requirements.   

3.9 Policies Enforcement 

Policies are an important component of cyber trust (Blasch, 2012) as shown in Figure 9.  As an 

example, a policy is administered for retrieval of information. Po licy informat ion determines the 

attributes for decisions. Determining the decision leads to enforcement. Such a decision is based on 

trust processing from which effective enforcement can support secure communications. 
 

 
 

Figure 9. Policy-Based Fusion of Information requiring Trust (Blasch, 2012) 

 

There are many possible information fusion strategies to enable data access from policies. Here we 

demonstrate an analysis of Bayesian versus evidential reasoning for determin ing cyber situation 

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scan number

T
ru

s
t

Trust in Decision

 

 

Demspters rule

PCR5 rule

Bayes Rule

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Scan number

P
e
rf

 I
m

p
ro

v
m

e
n
t

Trust in Decision

 

 

Ground truth

Demspters rule

PCR5 rule

Policy 

Retrieval 

Point (PRP)

Policy 

Administration 

Point (PAP)

Policy 

Decision 

Point (PDP)

Policy 

Information 

Point (PIP)

Policies

Policy 

Enforcement 

Point (PEP)

Attributes

AttributesPolicies

Policies Attributes

Policy Administrator

Application

System Administrator

Analyst

Policy 

Retrieval 

Point (PRP)

Policy 

Administration 

Point (PAP)

Policy 

Decision 

Point (PDP)

Policy 

Information 

Point (PIP)

Policies

Policy 

Enforcement 

Point (PEP)

Attributes

AttributesPolicies

Policies Attributes

Policy Administrator

Application

System Administrator

Analyst

Static versus Dynamic Data Information Fusion analysis using DDDAS... E. Blasch et al.

1311


