

An Open Framework for Dynamic Big-Data-Driven
Application Systems (DBDDAS) Development

Craig C. Douglas1,2
1 University of Wyoming, School of Energy Resources, Laramie, WY, U.S.A.

2 King Abdullah University of Science & Technology, SRI –Center NumPor, Thuwal, K.S.A.
craig.c.douglas@gmail.com

Abstract
In this paper, we outline key features that dynamic data-driven application systems (DDDAS) have. A
DDDAS is an application that has data assimilation that can change the models and/or scales of the
computation and that the application controls the data collection based on the computational results.
The term Big Data (BD) has come into being in recent years that is highly applicable to most DDDAS
since most applications use networks of sensors that generate an overwhelming amount of data in the
lifespan of the application runs. We describe what a dynamic big-data-driven application system
(DBDDAS) toolkit must have in order to provide all of the essential building blocks that are necessary
to easily create new DDDAS without re-inventing the building blocks.

Keywords: Big data, DDDAS, dynamic data driven applications, open source software, sensor networks,
uncertainty quantification, anomaly detection

1 Introduction
Dynamic data-driven application systems (DDDAS) is an application that uses data assimilation

that can change the models and/or scales of the computation and wherein the application controls the
data collection based on the computational results. The result is more precise predictions and more
useful visualizations or results.

Big Data is a paradigm for methods to handle enormous amounts of data that is either streamed,
which is the DDDAS preferred method, or that is historically stored datasets that are possibly still
growing for data mining. The field of computational sciences in recent years has merged with data
intensive computing to become what is referenced as Big Data [1]. Big Data has become a superset of
computational sciences with applications pervasive everywhere [2] leading to the interesting question,
“What if you had all of the data?” [3].

Technology limits to some extent how big the Big Data can be, but over time the size has increased
by 1,000 fold every few years since the 1950’s. Table 1 presents what was considered Big Data in
earlier eras. There is another aspect of Big Data when time is important: the smaller the time interval,

Procedia Computer Science

Volume 29, 2014, Pages 1246–1255

ICCS 2014. 14th International Conference on Computational Science

1246 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

the smaller the data size that transforms a problem into a Big Data problem. What makes a problem
Big Data is to a degree dependent on data throughput capabilities in a given situation.

Almost all interesting DDDAS cases overlap with Big Data. Solving one solves for the other one,
so it makes sense to study both simultaneously. The need for DBDDAS has already emerged in
analysis, design, and business, engineering and scientific processes. Resource management,
manufacturing process controls, traffic management, systems engineering, civil engineering, weather
and climate prediction, geological exploration, social and behavioral modeling, cognitive
measurement, and biosensing are areas that already benefit from DDDAS.

Our research in DBDDAS is motivated from the following:
• Obtaining and communicating out of sequence, questionable quality, remote data to local

and/or remote computers and using it to steer simulations and answer what if scenarios.
• Clear societal gains from more accurate, long term forecasts from nonlinear, time

dependent, complex models.
• Updating the entire DDDAS paradigm using recent Big Data research concepts.

Almost all DDDAS have dealt with Big Data issues throughout the history of DDDAS. Most projects
have individually invented Big Data concepts with no field wide consensus on how to handle Big
Data. Combining the two paradigms not only makes sense, but is essential to creating new DBDDAS
quickly and efficiently. Re-inventing the wheel, so to speak, is bad science once the wheel has been
identified.

The remainder of the paper is organized as follows. Section 2 is a review of the DDDAS abd Big
Data paradigms. Section 3 is a proposal for an open source toolkit to implement DBDDAS that should
make creating a new DDDAS far easier than is currently the case. Section 4 is an example based on
the toolkit proposal. Section 5 has conclusions.

2 DBDDAS := DDDAS + Big Data Paradigms
DDDAS is related to a number of other concepts that all historically relate back to the original data

assimilation concepts first used in the weather and climate modeling communities in the late 1960’s.

Unit Approximately 10n Related to
Kilobyte (KB) 1,000 bytes 3 Circa 1952 computer memory
32 KB 32,000 bytes 4 NASA Apollo 11 computer memory
Megabyte (MB) 1,000 KB 6 Circa 1976 supercomputer memory
Gigabyte (GB) 1,000 MB 9 Mid 1980’s disk controller memory

attached to a mainframe (that had 128 MB
memory)

32 GB 32,000 MB 10 2013 typical smart phone memory
Terabyte (TB) 1,000 GB 12 2012 largest SSD in a laptop
Petabyte (PB) 1,000 TB 15 250,000 DVD’s or the entire digital library

of all known books written in all known
languages

Exabyte 1,000 PB 18 175 EB copied to disk in 2010 (est.)
Zettabyte (ZB) 1,000 EB 21 2 ZB copied to disk in 2011 (est.)
10 Zettabytes 10,000 EB 22 Single NSA Big Dataset in 2013 (est.)

Table 1: What constitutes Big Data has changed over time

An Open Framework for Dynamic Big-Data-Driven Application ... Craig C. Douglas

1247

Some of the concepts are called intelligent data assimilation, steered data assimilation, solution-based
engineering science (SBES), cyber-physical sciences (CPS), etc. There are concepts in the sciences,
engineering, space sciences, and even funding agency specific terms that are all very similar. Which
term is used is irrelevant, what is relevant is the overall concept.

DDDAS is much more than simply adding data assimilation to some application that originally
takes static input data and provides an approximation to the solution at some forward time, which is
then iterated with more runs to produce a sequence (or movie visually) of predictions in future time.
DDDAS extends conventional applications by augmenting them with most or all of the following key
points: (1) Model state save, modification, and restoration (through cold or warm restarts). (2)
Ensemble data assimilation algorithms to modify ensemble member states by comparing the data with
synthetic data of the same kind created from the simulation state (ensemble Kalman filtering or
stochastic filtering). (3) Multiscale algorithms with model dependent interpolation methods. (4)
Retrieve, filter, and ingest data from intelligent sensors with potentially significant processing
capabilities (possibly through a data warehouse mechanism). (5) Visualize computed results on a wide
variety of devices including mobile ones such as a tablet or smart phone, laptop, workstation, on up to
a 3D immersive room.

Big Data extends conventional applications by adding the following to produce a corresponding
DDDAS: (a) Robust, highly distributed file systems capable of managing Big Data applications. (b)
Flexible methods for handling large quantities of data in highly parallel computing environments, e.g.,
Map-Reduce, which is a parallel merge-sort algorithm. (c) Fast, parallel read-write capabilities, e.g.,
NetCDF or HDF5. (d) Time dependent data retrieval based on dynamically chosen windows in time.
Hence, automatic weighting of data based on how recent it was acquired can be easily determined and
used. (e) Structured query language (SQL) and Not only SQL (NoSQL) capabilities for storing and
retrieving data from (dynamically growing) databases or data streams.

DDDAS requires sensors capable of dynamically supplying data to a simulation. An ideal sensor is
sensitive, selective, and communicates high level spatial and other relevant information to the
simulation rapidly using negligible bandwidth. Integrated Sensing and Processing (ISP) replaces
current sensor designs with DDDAS optimized sensor system architectures that are comprised of
interdependent networks of functional elements, each of which spans the roles and functions of
multiple separate subsystems in present generation sensor systems. ISP simplifies sensing in DDDAS
through spanning required multiple roles and functions. ISP research is developing mathematical tools
that facilitate the design and global optimization of systems that interactively unite usually
independent functions of sensing, signal processing, communication, and exploitation. ISP reduces
crucial degrees of freedom in sensing system design and operation without regard to traditional
subsystem limits and interconnect structures. This reduction is realized by applying modern systematic
methods from application based computational modeling and fast data adaptive representations to
discover and take advantage of any structure present in the data across every stage of the sensor
system. In many instances, ISP enables an instantaneous dimensionality reduction to a tractable
optimization problem that is far more appropriate to the structure of the problem than the traditional
sensing approach.

3 OpenDBDDAS Toolkit Components
In this section, we describe a set of components that can be combined and used to construct a

DBDDAS conveniently. Similar projects that use this toolkit will have the advantage of being able to
easily intermix pieces of their applications to construct better and unified ones. The cost of learning
how to make an efficient DDDAS will also decrease. The toolkit must be usable by non-computer
scientists.

An Open Framework for Dynamic Big-Data-Driven Application ... Craig C. Douglas

1248

In Section 3.1, we describe a six point data warehouse system that is key to processing Big Data.
In Section 3.2, we describe sensor description languages. In Section 3.3, we describe high
performance disk input/output. In Section 3.4, we describe cache aware hashing. In Section 3.5, we
describe secure, scalable map-reduce systems. In Section 3.2, we describe a DDDAS toolkit.

Figure 1: Typical use of OpenDBDDAS with a DDDAS

3.1 Data Warehouse
Data is stored, possibly temporarily, in a data warehouse. This is simply a comprehensive and very

flexible set of computer databases. Data entering goes through up to six steps:
1. Retrieval: Get the data from sensors or the growing databases. This may mean receiving data

directly from a sensor or database or indirectly through another computer or storage device.
There can be network side effects that cause data loss or damage.

2. Extraction: The data may be quite messy in its raw form. Thus, the relevant data may have to
be extracted from the transmitted information.

3. Conversion: The units of the data may not be appropriate for all of the applications using the
data warehouse. A consistent set of units is necessary.

4. Quality control: If possible, bad data should be removed or repaired and missing or
incomplete data should be repaired.

5. Store: If the data needs to be archived, it must go to the right medium, which might be
permanent or semi-permanent storage. If the data will not be archived, then it must exist only
briefly and then be discarded if it is not used during a known and well defined time period.

6. Notification: Any simulation using the data must be informed as new data enters the data
warehouse, which could necessitate either a cold or warm restart or a new start up.

All of these steps are common in both Big Data and DDDAS. Typically the quantity of data is
extremely large and there is a timeliness that must be addressed by the data center so the applications
run in (faster than) real-time.

ISP simplifies the data center entry process by performing data extraction and data conversion at
the detector inside of the sensor, which eliminates steps 2 and 3 above. Data is delivered from the ISP

An Open Framework for Dynamic Big-Data-Driven Application ... Craig C. Douglas

1249

as high level information tokens that require almost no extra communication bandwidth. Bad data may
be edited, completed, or removed as data are tokenized, potentially eliminating step 4 in the data
center, too.

3.2 Sensor Description Language
Having a standard sensor description language is an obvious component for a DBDDAS Toolkit.

SensorML [4] provides such a standard and provides a framework within which the geometric,
dynamic, and observational characteristics of sensors and sensor systems are defined. There are many
different sensor types, from simple thermometers to complex electron microscopes and Earth orbiting
satellites. SensorML supports the definition of atomic process models and process chains to encode
any of these types of sensors. SensorML is part of the Geospatial standards [5]. Unfortunately, while
SensorML is well defined, its implementation comes from a commercial source and is anything, but
free.

A open source implementation of SensorML (or equivalent) is essential to the DDDAS community
agreeing on a single description of essentially all known sensors.

3.3 High Performance Disk I/O
Choosing one (or more) existing high performance parallel disk input/output systems that does not

include a distributed file system is realistic. For example, HDF5 and NetCDF are two candidates that
have large followings. In most computing environments that support Big Data, there already is a
distributed file system installed and maintained by the computer center staff. For example, Lustre,
IBM’s GPFS, Google’s GFS, and Apache’s HDFS are all common.

3.4 Cache Aware Hash Table System
The user part of a Map-Reduce typically uses hash tables and hashing. Textbook style
implementations (e.g., [6]) are simple codes and have no bugs. However, both Google and Yahoo!
developed ideas that incorporate hardware acceleration through clever use of CPU memory caches.
That the codes do the same thing as the textbook style codes is not obvious nor are the codes clearly
correct. However, the codes are fast and can run up to 150 times faster than the textbook style codes
for the right type of hash functions and data.

3.5 HPPA Compliant Map-Reduce
An open source Map-Reduce [7] suitable for medical records that must (a) be HPPA (the U.S.

standard for medical record privacy) compliant, (b) scale well for very large databases, (c) have
individual user access capabilities, (d) not have complexity O(disk access) on a distributed file system,
and (e) detect and report inappropriate uses of the system. (d) means that it should use OpenMP and
MPI. Such a Map-Reduce system will be useful well beyond just medical records.

3.6 DDDAS Toolkit
The DDDAS Toolkit will consist of at a minimum the following components:

1. Define DDDAS and its runtime requirements abstractly.
2. Uncertainty quantification and statistical analysis.
3. Numerical solvers for standard nonlinear time dependent coupled PDEs and optimization.
4. Fuzzy mathematics.
5. Data assimilation using multiscale interpolation methods and ensemble methods.
6. Item identification, tracking, and steering.

An Open Framework for Dynamic Big-Data-Driven Application ... Craig C. Douglas

1250

7. Anomaly tracking and verification. [8]
8. Human notification methods.

Many of these components already exist in some form or another. Collecting ones that the DDDAS
community will agree to use is a challenge that must be met.

In [9] is a definition of a DDDAS in terms of a 5-tuple: W=(S, D, M, A, R), where
• S = {si} is the set of static inputs and corresponds to what an application that does not have

data assimilation capabilities.
• D = {di} is the set of dynamic inputs that pass through the data warehouse to the DDDAS.

The magnitude of D measures how dynamic the application actually is.
• M = {mi} is the set of models and cmayan contain one or more mathematical, multiscale, and

scientific specific models.
• A = {ai} is the set of applications, which can be just one application or multiple ones that are

typical in multi-physics applications.
• R = {ri} is the set of runtime requirements. In [10] is a detailed description of possible

computing, networking, scheduling, and security possibilities that need to be defined for a
general purpose DDDAS.

Many DBDDAS have to solve an inverse problem in order to estimate parameters that
mathematically define the models used in the application. A small error in estimating the parameters
can lead to large errors in the predictions from the models. Quantifying the uncertainties and errors is
an emerging field in science and very important to estimating the errors in the predictions [11]. A
significant advantage of the DBDDAS paradigm is that the additional dynamic data from sensors and
data sources during runtime leads to self correcting processes unavailable to traditional applications
just based on static input datasets and vast numbers of samples to measure and quantify uncertainties
that in the traditional case requires vast numbers of example runs to acquire far less data.

For any scientific or engineering based DBDDAS, there will be solvers need for the mathematical
models. Linear, nonlinear, time stepping, and optimization method solvers must be available in a
general purpose toolkit. Additionally, meshing and pre- and post-processing using graphical methods
are also necessary in order to prepare initial inputs and to visualize predictions. None of these
requirements need to be created anew since software libraries have been developed in this area since
the early 1970’s.

Many DBDDAS have one or aspects that cannot be represented by single, precise values. For
example, a range of values (e.g., the temperature is -3 C to 0 C) might all be that is available and is
still useful. Alternately, multivalued logic (versus true-false logic) may be necessary. Fuzzy
mathematics and logic, respectively, has been developed to deal with both requirements [12].

Data assimilation using multiscale interpolation methods [13] and ensemble methods [14] is
essential to creating a DDDAS or DBDDAS. Typically a coarse mesh of sensors is independent of the
much finer mesh used to solve mathematical problems inside the application. Interpolation from the
coarse mesh onto the much finer mesh is most accurately achieved using a mathematically operator
induced multiscale interpolation method. For example, in a typical oil reservoir, there may be a few
hundred locations for the sensors and a few million finer mesh points. Standard interpolation is not
accurate enough.

Item identification, tracking, and steering is a large field of research with evolving results. The
item(s) can be ground, aerospace, or water based vehicles with or without people on board to help with
steering.

Trying to identify people with particular psychological properties when passing through airport
security is a commercial product that has been deployed by the U.S. Transportation Security Agency
that started as a NSF funded DDDAS project. On the other hand, tracking a vehicle in a complex
urban environment is still open research. When a vehicle passes through an obscured intersection with
other similar moving vehicles, it is not easy to determine which is the vehicle to continue tracking.
Vehicle steering is also an active research field.

An Open Framework for Dynamic Big-Data-Driven Application ... Craig C. Douglas

1251

Finding data anomalies is challenging [8]. An anomaly is defined as any data that is outside of the
domain of expected data. Expected data is both application and time dependent within an application.
Getting real data for training is nearly impossible for many applications. Noisy data may appear to be
an anomaly, but is not. A general purpose anomaly detection library is essential to the Toolkit and is
still an active research area.

Automatic human notification methods to provide a human in the loop requires being able to
communicate through a number of channels: email, FAX, instant messaging, phone calls using
automatically generated voice messages, and visual interruptions on computers monitoring an
application. An ordered set of methods must be simple to organize that allows for time constraints for
how long each method should be relied on before escalating and which ones should be used in
parallel.

The Toolkit consists of quite complicated components that are either already existing or still being
researched and constructed. However, to be effective and improve the likelihood of general adoption
by application specialists, the Toolkit must be usable by non-computer scientists.

4 An Example
FlightCast [15] (see Figure 2) was developed to accurately predict when flight connections would

be missed far enough in advance to seamlessly allow a frequent flyer time to get one or more backup
itineraries. Approximately 20% of all flights in the U.S. are more than 15 minutes late (the industry
standard for determining if a flight is late) or cancelled each year. This statistic has remained
remarkably constant over the last four decades for the major airlines that serve more than a small
region.

FlightCast tracks the results of airline flights over time and uses this data to accurately predict the
probability of either a significant delay or cancellation of a flight. Factors taken into account include

Figure 2: FlightCast as it would be implemented using OpenDBDDAS framework

An Open Framework for Dynamic Big-Data-Driven Application ... Craig C. Douglas

1252

flight information provided by airlines, weather information, terrorism threat level as reported by the
U.S. Federal Aviation Administration (FAA), and seasonal and location specific information.

The FlightCast DBDDAS consists of five major types of components:
1. Sensors: collect data for the DBDDAS from numerous sources.
2. Transport: transfer data between the sensors and the other parts of the DBDDAS through

the data warehouse.
3. Data store: in the data warehouse for collected data.
4. Predictor: predict flight delay and cancellation based on historical data and current

conditions.
5. Corrector: analyze the accuracy of predictions and make corrections to weights used by

the predictor to improve accuracy over time.
Note that component 1 is the top layer in Figure 2, components 2 and 3 are part of the data warehouse
described in Section 3.1. Components 4 and 5 are the heart of the DBDDAS and extensively use the
DDDAS toolkit functions.

The sensors are software agents. There are agents for travellers, airlines, weather, threat levels, and
seasonal trends. The agents were written typically in Python and some required dynamic modifications
to keep up with changes in querying methods to online databases maintained by airlines, weather
forecasters, and the FAA.

We used extremely low level web requests for very specific information without receiving the
standard, extensive, graphics laden, and ad infested web pages in return. We then parsed the returned
information using simple state based tools that compilers are frequently constructed from. Cookies
played a part in further reducing the amount of data returned by the web sites.

The traveller sensor tracks where the passenger should be before and during the flight(s). It also
monitors personal preferences such as the order of choice of airlines, nonstop flights versus connecting
ones, maximize or minimize airline frequent flyer qualifying miles on rebooking, and whether or not
to optimize arriving at the destination in a timely fashion or significantly late (e.g., in order to reap
future travel benefits).

The airline and weather sensors were similar to each other and had to be tailored to specific web
sites. The airline sensors were specific to each monitored airline and collected information about flight
departure and arrival times, cancellations, and could also collect terminal and gate information, which
would be useful in determining the ability to get between flights. The weather sensor collected
information about wind speed, wind direction, visibility, temperature, and the type of precipitation.

The seasonal and location specific sensors have a required learning period of at least one year. We
used a number of year’s worth of weather data specific to a set of airports to preload a database and
correlated flight delays and cancellations to it while letting it grow dynamically.

The transport component [16] was Java based software that linked the sensor, predictor, and
corrector components. The original transport component worked on serial computers only, but was
modified to run on many computers as a GRID computing entity and stored data in SQL based
databases.

The predictor combined data from the relevant sensors (airline, weather, threat level, seasonal, and
a specific traveller), weighted the data, and produced a probability (from 0 to 1) of either a significant
delay or cancellation. Each factor in the probability was produced using fuzzy logic. The factors used
in the predictions were stored in the database for use by the corrector component later.

The corrector component reviewed the results of the predictor on a regular basis. It is inexpensive
computationally due to the information saved in the prediction component. The main purpose of the
corrector is to adjust weights used in the predictor component. Both the predictor and corrector
components usually ran multiple times over time before the actual flight(s) and the corrector ran once
more after the flight(s).

FlightCast resembles the combined DDDAS and Big Data that we believe is the future of
DBDDAS. Building up a database of flight information for just Delta and United airlines over one

An Open Framework for Dynamic Big-Data-Driven Application ... Craig C. Douglas

1253

year generated enormous amounts of data, even with relatively low sampling rates. After several
months of operating FlightCast tracking one particular frequent flyer with a weekly roundtrip
commute between New York’s Laguardia and Lexington’s airports, FlightCast had a better than 95%
correct prediction rate. The two airlines tracked had nothing similar to FlightCast and could only react
to aircraft delays and maintenance issues on the day of flights plus day before weather related
cancellations. To date there is no similar tool to FlightCast available to the general public, much less
deployed by any airline. It is still the state of the art DBDDAS in its field.

5 Conclusions and Future Work
Most DDDAS have a number of common components:

• Correct sensors need to be chosen to provide good data from specific locations.
• Sensors need to provide data with a known error bound within known time constraints.
• Data is not guaranteed to be accurate, complete, nor timely, but will arrive anyway and must

be sensibly processed, including discarding.
• Intelligent sensing and processing (ISP) greatly simplifies data warehouse ingestion.
• Hardware sensors, like software ones, should be dynamically reprogrammable during

simulations.
• Rapid error growth in new data when steering is unavailable frequently occurs, causing

simulations to be restarted. Automatic new methods to recognize and curtail rapid error
growth are essential. New data intensive methods are helpful.

• An application’s models, numerical methods, and most significant items that are tracked may
need to be changed as a result of the incoming sensor data or a human in the loop.

• Extremely large quantities of input and/or output data that is difficult to analyze.
• Inadequate visualization of output data.

The OpenDBDDAS Toolkit should have at a minimum, the following components: a general
definition scheme for a DDDAS and its runtime requirements, uncertainty quantification and statistical
analysis, numerical solvers for standard (nonlinear time dependent coupled) PDEs, optimization
solvers, data assimilation using multiscale interpolation methods, item identification, tracking, and
steering, anomaly tracking and verification, and human notification methods.

Using Big Data analytic techniques, much longer running simulations are possible instead of
running a large sequence of short running simulations and then combining each result into a video of
predictions. Additionally, data can be better analyzed, visualized, managed, and accessed faster using
the Big Data paradigm than ad hoc data management methods created by nonexperts who excel
otherwise in application simulators.

The future lies in first getting a consensus among applications specialists who create DDDAS-like
or similar intelligent data assimilation application systems with large data on what should be in the
initial release of the OpenDBDDAS Toolkit. Cooperation between many research groups who have
existing DDDAS is essential. The second key point is to choose existing packages that meet these
requirements and to start writing new packages where no acceptable one already exists. The third key
point is getting a working example that is both useful and can be a model for creating new DBDDAS
is essential.

Acknowledgments

This research was supported in part by National Science Foundation grant EPS-1135483 and Award
No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).

An Open Framework for Dynamic Big-Data-Driven Application ... Craig C. Douglas

1254

References

1. Bryant, RE, Katz, RH, Lazowska, ED, Big­Data Computing: Creating revolutionary breakthroughs in

commerce, science, and society, Ver. 8, (2008), Computing Research Association, Computing Community
Consortium.

2. Hey, T, Tansley, S, Tolle, K, The Fourth Paradigm: Data­Intensive Scientific Discovery, (2009), Microsoft
Research.

3. Manyika, J, Chui, M, Brown, B, Bughin, J, Dobbs, R, Roxburgh, C, Byers, AH, Big data: The next frontier
for innovation, competition, and productivity, James (2011), McKinsey Global Institute.

4. http://www.opengeospatial.org/standards/sensorml.
5. http://www.opengeospatial.org/ogc/markets-technologies/swe.
6. Aho, AV, Hopcrift, JE, Ullman, JD, The Design and Analysis of Computer Algorithms, Addison-Wesley,

Reading, 1974.
7. Dean, J and Ghemawat, S, MapReduce: Simplified Data Processing on Large Clusters, OSDI'04: Sixth

Symposium on Operating System Design and Implementation, ��� San Francisco, CA, December, 2004, pp.
137-150.

8. Chandola, V, Banerjee, A, and Kumar, V, Anomaly detection: a survey, ACM Computing Surveys, 41/3
(2009), article 15, 58 pages.

9. Darema, F, DDDAS Computational Model and Environments, Journal of Algorithms & Computational
Technology, 5 (2011), pp. 545-560.

10. Douglas, CC, Allen, G, Efendiev, Y, and Qin, G, High performance computing issues for grid based
dynamic data-driven applications, Proceedings of DCABES 2006, Xu, X. and Wang, G. (eds.), Shanghai
University Press, Shanghai, (2006), pp. 175-178.

11. Biegler, L, et al, Large-Scale Inverse Problems and Quantification of Uncertainty, John Wiley & Sons,
Chichester, 2011.

12. Kerre, EE and Mordeson, JN, A historical overview of fuzzy mathematics, New Mathematics and Natural
Computation, 1 (2005), pp. 1-26.

13. Efendiev, Y and Hou, TY, Multiscale Finite Element Methods: Theory and Applications, Surveys and
Tutorials in the Applied Mathematical Sciences series, 4 (2009), New York.

14. Evenson, G, Data Assimilation: The Ensemble Kalman Filter, Springer, Berlin, 2nd ed., 2009.
15. Hyatt, Jr., R, Bansal, D, Chakraborty, S, Hatcher, J, Lim, C-L, Maynard, CM, Presgrave, T, Douglas, CC,

and Haase, G, Flight cast – an airline flight delay predicting DDDAS, Proceedings of DCABES 2007, Guo,
Q and Guo, Y (eds.), Hubei Science and Technology Press, Wuhan, 1 (2007), pp. 85-88.

16. Li, W, A Dynamic Data-Driven Application System (DDDAS) Tool for Dynamic Reconfigurable Point-to-
Point Data Communication, Master’s Thesis, University of Kentucky Computer Science Department,
Lexington, KY, (2006).

An Open Framework for Dynamic Big-Data-Driven Application ... Craig C. Douglas

1255

