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Abstract

Electricity networks need robust decision making mechanisms that enable the system to respond swiftly and effectively to
any type of disruption or anomaly in order to ensure reliable electricity flow. Electricity load dispatch is concerned with the
production of reliable electricity at the lowest costs, both monetary and environmental, within the limitations of the
considered network. In this study, we propose a novel DDDAMS-based economic load dispatching framework for the
efficient and reliable real-time dispatching of electricity under uncertainty. The proposed framework includes 1) a database
fed from electrical and environmental sensors of a power grid, 2) an algorithm for online state estimation of the considered
electrical network using particle filtering, 3) an algorithm for effective culling and fidelity selection in simulation
considering the trade-off between computational requirements, and the environmental and economic costs attained by the
dispatch, and 4) data driven simulation for mimicking the system response and generating a dispatch configuration which
minimizes the total operational and environmental costs of the system, without posing security risks to the energy network.
Components of the proposed framework are first validated separately through synthetic experimentation, and then the
entirety of the proposed approach is successfully demonstrated for different scenarios in a modified version of the IEEE-30
bus test system where sources of distributed generation have been added. The experiments reveal that the proposed work
premises significant improvement in the functional performance of the electricity networks while reducing the cost of
dynamic computations.
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1. Introduction

Reliance on foreign energy sources weakened by a fragile electrical grid poses major threats to the United
States’ security [1] [2]. Quantifying this statement, the Air Force (AF) alone spent $1.06 billion during 2007 on
its worldwide energy needs as the largest consumer of petroleum within the Department of Defense.
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Consequently, deployment of smart grid and energy efficient technologies has become an essential focus area
for science and technology investment along with increased use of multi-scale simulations and autonomous
systems. To this end, expanding renewable energy for facility use in conjunction with the implementation of a
national clean energy smart grid, would reduce the risks and burdens on budgets and bolster national security.

Regarding smart grids, technological advances in microturbines, solar panels, reciprocating engines, digital
controls and remote monitoring devices (among various others) have increased the opportunities and
applications for “next generation” power grids, and have given customers great flexibility to tailor energy
systems to their specific needs. At the same time, electric utility companies are exploring the possibilities that
distributed generation may help address some of the requirements of the electric system, promoting greater
energy security, economic competitiveness and environmental protection. Distributed generation has the
following impacts on power networks: in terms of voltage violations and power qualities, the presence of
distributed generation may help to reduce variations and impact voltage flicker and harmonics, in terms of
power losses, the deployment of distributed generation will generally decrease the amounts of power lost in the
system, and last but not least, the presence of distributed generation may enhance reliability if used to provide
backup power. However, increasing penetration level of the distributed generation may increase security risks
and cause crashes in the energy system, if it is not properly interfaced with the network.

Considering the issues highlighted above, effective monitoring and management of these critical
infrastructures is vital to realize economic security and reliability in operations including cost savings in energy
consumption, mitigating the debilitating impacts of possible central grid disturbances such as faults, power
quality events, and most critically black-outs, improvements in reactive support and voltage profiles, removal
of distribution and transmission bottlenecks, reduction of losses, and development of new transmission and
generation systems. While initial demonstrations of important concepts that are integral to the power network
configurations have been achieved, a fully functional master controller does not yet exist [3]. In this study, we
investigate a novel dynamic data driven adaptive simulation (DDDAMS) framework that is designed for the
efficient and reliable real-time dispatching of electricity under uncertainty.

The proposed framework includes 1) a database receiving data from electrical and environmental sensors of
a power grid, 2) an algorithm for online state estimation of the demand nodes in the considered electrical grid
using particle filtering, 3) an algorithm for effective culling and fidelity selection in simulation considering the
trade-off between the computational requirements of simulations, and accuracy of anticipated dispatch results
in terms of environmental and economic costs, and 4) data driven simulation for mimicking the system
response behavior and generate a dispatch configuration which minimizes the total operational cost and power
loss of the system, without posing security risks to the energy network.

The rest of the paper is organized as follows. In Section 2, we provide the background and literature review
on dynamic data driven application systems (DDDAS) paradigm. In Section 3, we describe our proposed
DDDAMS framework for economic load dispatching in distributed power grids. In Section 4, we describe the
characteristics, topology, and sensory data of the considered IEEE-30 bus system; and discuss the performance
of the proposed framework via results obtained using this system. Finally in Section 5, we provide conclusions
and discussions on the planned future venues for this work.

2. Previous Works on DDDAS Paradigm

Dynamic data driven application systems have been conceived as a powerful tool that allows more effective
measurement processes in a variety of application areas, bringing along challenges in the aspects of
applications, mathematical algorithms, systems software, and in the way data is collected [4]. In a study of
contaminant tracking, numerical procedures for multi-scale interpolation are introduced in order to map sensor
data and allow continuous update of the simulation [5]. Another study [6] introduces the use of online data
acquisition and a filtering control to recognize out-of-order data. [7] draws attention to the challenges of
automatically adapting simulations when experimental data indicates that a simulation must change. To this
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end, a simulation is first run to gain insight about a phenomenon. Then, this insight is used to determine what
new observations should be collected, and the simulation is adapted to reflect these observations. Generalizing
software to anticipate all possible ways it could change is difficult, and attempting to do so usually comes at the
expense of performance, as well as makes the code unmanageably complex [8]. However, the problem of
software adaptation can be simplified by taking advantage of the flexibilities and constraints of a simulation at
the same time. Without flexibility, automatic adaptation is impossible because there is no way to know which
alternatives should be considered. Without constraints, automatic adaptation is infeasible because there are too
many alternatives to consider in a timely fashion. [7], therefore, propose a semi-automated adaptation approach
that exploits the flexibility and constraints of model abstraction opportunities to automate simulation
adaptation. While their study does not involve manual or automatic modification of the code or application of
optimization methods which can make the software extremely complex to control, it is still in need of human
intervention to determine the most likely places of the code in need to be changed. In our proposed research,
changes in level of detail of data acquisition and the choice of certain parameters over others allow the
automatic multi-fidelity adaptation in the simulation model.

In [9], researchers from the University of Kentucky and University of Miami’s Rosenstiel School of Marine
and Atmospheric Science report their efforts to build data driven application systems for short-range
forecasting of weather and wildfire behavior from real time weather data, images, and sensor streams. [11] and
[12] propose a simulation-based shop floor planning and control system, where the same simulation model
(executing in the fast mode and after going through some modification) is employed at the planning stage after
it is used as a real-time task generator at the control stage. In their approach, the real-time simulation drives the
manufacturing system by sending and receiving messages using socket-based communication links. While the
use of real-time simulation as a task generator is common ground for these works and our current study, the
adaptive simulation scheme steering the measurement process for selective data update and incorporating the
real-time dynamic data into the executing simulation model is novel in our research. Such adaptivity allows us
to save computational power usage while keeping the model accurate enough by wisely drawing conclusions
via the embedded algorithms which are developed as part of this research.

3. Proposed DDDAMS Framework
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Fig. 1. Overview of proposed DDDAMS framework with embedded algorithms

In order to address the challengs mentioned in Section 1, a dynamic data driven adaptive multi-scale
simulations (DDDAMS) framework is proposed in this study (see Figure 1 for overview). The overall scheme
envisioned is a robust multi-scale federation of simulation models that support planning and control decisions
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in electrical networks and their connection to central power grids. The basic structure of the proposed
DDDAMS system consists of the application (real system — electrical power network), the grid computing
modules, a message-oriented web server, databases where the updated measurement values are stored, and the
real-time (RT) DDDAM-simulation. Decision making capabilities of the proposed framework are enabled
through embedded algorithms. Data sources (sensors) installed in each component (e.g., regions in electrical
network) obtain data from the real system and transmit it to the RT DDDAM-simulation through the web
server. Given the updated sensory data and available computational power, algorithms embedded in the RT
DDDAM-simulation are invoked to determine the system state and level of detail (fidelity) that the simulation
model should run at. Then, the DDDAM-simulation adjusts itself to continue running on this new fidelity to
evaluate the future behavior of the system and generate control tasks (environmental economic load dispatch in
the considered application). Once the best task alternative is chosen, it is executed to drive the actual system as
planned at the control stage where switching between the planning and control stages may occur either
periodically or as a result of a system change (event-based). This process continues while the DDDAM-
simulation is running. The skeleton and working principles of the components of the proposed framework are
detailed in the following sub-sections.

3.1. Online State Estimation of a Networked Electrical Grid using Particle Filtering

Efficient state estimation is crucial in power networks due to its major impact on the control of the power
flow and security of the system. While the state estimation has been extensively studied for transmission
systems, the techniques used at the transmission level are not suitable for distribution networks mainly due to
the lack of reliable (diverse) measurement data and accurate measurement models. State estimation in medium
voltage networks at the distribution level is conducted by evaluating the voltage and angles of each and every
bus in the network, and is a non-linear problem. As such, a reliable state estimation necessitates the timely
evaluation of massive datasets containing electrical information which usually are collected by the Supervisory
Control and Data Acquisition (SCADA) system. However, this is not a trivial task due to two main reasons.
First, handling all the state variables of the nodes in distributed power networks in real time is itself a
significant challenge due to the computational power requirements associated with its processing. Second, the
data collected via the SCADA system is often noisy and erroneous causing further inaccuracies in the
estimation. Addressing these challenges, the proposed algorithm aims at producing accurate estimation of
these states in real-time against imperfect and massive datasets using a smart sampling approach. By using the
previously estimated states, and incoming dynamic measurements obtained from both environmental (i.e.,
temperature) and electrical sensors (i.e. real power injections, reactive power injections, real power flows,
currents, etc.), the algorithm updates estimations for state of each node in the network at each decision cycle.

In this work, the proposed state estimation algorithm embeds two particle filtering (PF) sub-procedures that
can either be used separately or combined (see Figure 2). The first sub-procedure yields to an aggregate state
estimation (for major states) incorporating the measurements from environmental sensors such as temperature
and seasonality as depicted partially in (1), while the second one refines this estimation by using the
measurements from electrical sensors such as voltage magnitudes, power injections, power flow, and current
(for minor states) as depicted in (2). In this proposed algorithm, the states of the buses are defined by the real
and reactive power injections in those buses. Frequency of data collection is determined on the basis of load
variation and response times of the different available energy generation sources. The minimum and maximum
of these frequencies are governed by the fastest possible response time of energy generation sources and
duration in which the load variation is kept within a threshold, respectively. Evidently, higher frequencies of
data collection lead to higher accuracies in estimations. On the other hand, lower frequencies result in lighter
computational weights. As a consequence, the optimal (or near optimal) frequency for data collection should be
decided considering this trade-off between estimation accuracy and its associated computational burden. Once
this frequency is set, the algorithm generates four state variables corresponding to real and reactive power
injections at either week-day or weekend-day for each bus.
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When a new environmental measurement is available, the first PF sub-procedure is initiated. A sample with
size N, is drawn from the prior power injection probability density function and their weights are assigned. If
the effective number of particles (the number of samples that have significant weights) is substantially small,
the resampling step is invoked and new samples are drawn (still at the same stage). When the effective number
of particles is sufficient, the major state variables are estimated and stored. Then, the second sub-procedure is
commenced using new electrical measurement to increase the accuracy of these major states via newly
introduced “minor” states. Here, a new sample with size N, is drawn and as in the first sub-procedure, weights
are assigned to them. If necessary, the resampling step is used, and new estimations for the minor state
variables are computed. Since the electrical measurements are collected more frequently than the
environmental ones, the estimation obtained from the second sub-procedure is used to correct the estimation
obtained from the first one.
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Fig. 2. Operations of the state estimation algorithm using particle filtering

It should be noted that electrical measurements, incorporated into the second sub-procedure can be handled
flexibly considering the trade-off between algorithm’s estimation accuracy and the computational burden it
requires. Therefore, if a higher accuracy is desired, the algorithm will be obliged to run with larger datasets
comprised of measurements obtained at more frequent time intervals. On the other hand, if a faster response
time is preferred, only selective measurements gathered at specified times or places will be used. This
capability is enabled in this second sub-procedure through the usage of several sets of measurements that are
available within each predefined interval. This particular characteristic leads to a remarkable difference from
the generic particle filtering technique. In the generic filter, a single measurement parameter is used to estimate
the posterior probability distribution for each state. However, in the proposed sub-procedure, several
measurements can be incorporated at the same stage and thus potentially provide better state estimations. On
the other hand, certain minor states can be omitted, depending on the desired accuracy level and the usage of
computational sources. The assessment of the minor states in the second sub-procedure may be used to improve
the estimation of the major states. In this way, an enhanced efficiency of the algorithm can be achieved by
combining the two sub-procedures and running them simultaneously.
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3.2. Effective Culling and Fidelity Selection in Simulation

The goal of the proposed effective culling and fidelity selection algorithm is to determine the best feasible
level of detail that the DDDAM-Simulation should run at in order to derive the dispatch while ensuring that
minimal computational resources are used. In our proposed framework, culling and fidelity selection are
performed based on the estimated states that are evaluated in the online state estimation algorithm and the
expected computational burden needed for this simulation.

Here, if the algorithm concludes that the system is operating under normal conditions or the variation in the
load is restricted to a some particular sub-network, the amount and type of data pulled from the real system
become area-specific, and the level of detail of the simulation is set to the most detailed one in that sub-network
whereas the rest of the network is simulated at the most aggregated level in order to save from computational
resources (namely Fidelity 1). Therefore in Fidelity 1, the simulation only modifies the dispatch of the sources
in this sub-network and the swing bus (used to ensure load balancing). On the other hand, if the state
estimation algorithm diagnoses several abnormalities or load variations dispersed throughout the entire network
at the expense of heavier computational burden, the DDDAM-Simulation is run for the entire network at the
highest detail possible (namely Fidelity 2) in order to update its dispatch decisions.

The environmental economic load dispatch problem considered in this work is the determination of the
output of electric resources to reliably meet the system demand minimizing economic and environmental costs,
while ensuring that constraints of power balance, and capacity limits are met. The total economic cost of the
generated electricity is provided by ¥, a; + b;P; + c;P?, where a;, b;, and c; are cost coefficients of the it
generator, and P; is the amount of the real power obtained from the i generator. The total environmental cost
of the generated electricity is provided by 2[10‘2 (a; + B;P; + viP?) + Cie’lipi] where a;, b;, Vi, {;, and A; are
the coefficients of the i™ generator’s emissions. The total power loss is defined as Pjygs = Y0, (P; — L;),
where P, is the total power loss, N is the total number of buses, and L; is the real load at bus i. The capacity
and real and reactive power balance constraints that must be satisfied in the economic dispatch problem are
given in (3)-(5) where V; is the voltage magnitude at bus i, §; is the voltage angle at bus i, ;; is the transfer
conductance between buses i and j, T;; is the transfer susceptance between buses i and j, Q; is the reactive
power generated at the i"™ bus, and R; is the reactive load at bus i.

PM™ < Py < PO Vi 3)
Pi - Li - VL'E?]=1 Vj[CL‘jCOS(é‘l' - 61) + Tijsin(é'i - 6])] =0 Vi (4)
Qi - Ri - Vl Z?Izl V][CUSLTL(SL - 5]) + TijCOS((Si - 6])] =0 Vi (5)

3.3. Realization of Architecture in Virtual Setting

In this work, data driven simulations of the considered real system (a test power network) are built in a
multi-scale manner where models are federated in a distributed computing environment. Each process in our
considered power network has different inputs, outputs, and controls which can be modeled via different
modeling techniques, such as different statistical distributions, differential equations, or process simulators for
different levels of fidelities considering the modeling accuracy and computing power. For instance, if the
culling and fidelity selection algorithm concludes that the system is operating under normal conditions, the
amount and type of data pulled from the real system become minimal and the level of detail of the simulation is
set to the most aggregated level in order to save from computational resources. If the culling and fidelity
selection algorithm detects an abnormality, the amount and type of data pulled from the real system as well as
the level of detail of the simulation increases gradually. Once the model fidelity is determined, the data driven
simulation adjusts itself to evaluate the future behavior of the system. Changes in computational resource
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availabilities due to collecting, processing, and analyzing data from the sensors (based on the selected fidelity)
are monitored via an automated .NET based Grid Computing framework.

3.4. Communication using Web Services and Time Synchronization

For the execution of data driven simulations, there is a need of communication between heterogeneous and
distributed system simulations. In this work, we facilitate this feature by the communication server that has
been developed in earlier works [13][14] using Web Services technology (state-of-the-art distributed
computing technology) that overcomes barriers of standard communication via the usage of W3C standard
protocols including XML, WSDL, and SOAP. The communication server provides a backbone which
complements the computation structure provided by grid-based computing. Web Services provide an elegant
mechanism for communicating among distributed components without keeping much state information, as
required in conventional means such as socket based interaction.

4. Experiments and Preliminary Results
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The proposed DDDAMS framework is validated via a modified version of the IEEE-30 bus test system
from the Department of Electrical Engineering at the University of Washington. The original version of the
IEEE-30 bus test system includes 31 buses and 41 lines, with energy generation at 6 buses, energy loads at 22
buses and 5 buses with no generation or loads. In our modified version of the IEEE-30 bus system we have
chosen to add 3 sources of distributed generation to the system, located at buses 7, 21 and 23, arbitrarily and
divide the network so that 19 of the buses form a sub-network, as shown in Figure 3.

In order to evaluate the performance of the DDDAMS framework, two different scenarios are considered. In
the first scenario, load variation occurs only in the buses within a sub-network; while in the second scenario,
load variation may occur throughout the entire network. To this end, the best feasible fidelity is determined for
each scenario when the variation in the loads are less than 3%, 6%, and 9%, respectively. Table 1 shows the
original loads versus loads obtained from the state estimation algorithm when there is a change of up to 3%. In
our experiments, the simulation is run for 30 independent iterations.

4.1. Scenario 1:Load Variation Occurs only within the Sub-network

This first scenario represents the situations when there are load changes only in some specific buses whose
impact may potentially be enclosed within a sub-network, and may not be felt in the entire network. Here, a
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non-dominated solution set including a best compromise dispatch obtained using the fuzzy logic method
presented in [15] (highlighted in red in Figure 4) is shown for benchmarking purposes. Their best compromise
solution has a cost and emissions of $633.27 per hour, with emissions that total 0.2673 tons per hour. The non-
dominated solution set has energy dispatch options that range from $560.07 to $722.81 per hour, in terms of
cost, and from 0.2671 to 0.2673 tons per hour in terms of emissions.

When loads within a sub-network vary up to 3%, and the fidelity selection algorithm decides to run the
simulation at Fidelity 1 (capturing the considered sub-network and swing bus only), a best compromise solution
that has a cost of $634.67 per hour with emissions of 0.26725 tons per hour is achieved (shown in light green in
Figure 5). The total computational time used for this solution is 181.4516 seconds. Here, the non-dominated
solution set (shown in green in Figure 5) ranges from $600.59 to $658.75 per hour in terms of cost and from
0.2672 to 0.2673 tons per hour in terms of emissions. If the fidelity selection algorithm determines that a full
update of the energy dispatch is necessary and decides to run the simulation at Fidelity 2, the best compromise
solution (shown in light blue in Figure 5) has a cost of $665.10 per hour with emissions of 0.26721 tons per
hour. The total computational time used for this solution is 483.5126 seconds. In this case, the non-dominated
solution set (shown in blue in Figure 5) ranges from $524.28 to $697.35 per hour, and from 0.2672 to 0.2674
tons per hour. It is important to highlight that if the information from both of fidelities is combined and a
collective non-dominated solution set is constructed, the best compromise solution of this set becomes the
solution with the least emissions, from the non-dominated solution set obtained using Fidelity 1 (highlighted in
red in Figure 5). Therefore, in this scenario the use of Fidelity 1 for simulation produces satisfactory results
with savings in computational time of 302.061 seconds.

Non-dominated Solution Set Non-dominated Solution Set
0.26745 0.26745
= = Sub-Grid Optimizai
S 02674 = = 02674 o D7 TC pmizaon
= H @ Full Optimization
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Fig. 4. Base loads non-dominated solution set Fig. 5. 3% load changes within the sub-network

When loads within a sub-network vary up to 6% and the simulation is run at Fidelity 1, the best compromise
solution has a cost of $635.73 per hour with emissions of 0.2673 tons per hour, while the total computational
time used for solution is 208.01 seconds. In this case, the non-dominated solution set ranges from $608.39 to
$667.05 per hour in terms of cost and from 0.2672 to 0.2673 tons per hour in terms of emissions. If the
simulation is run at Fidelity 2, the best compromise solution has a cost of $657.38 per hour with emissions of
0.2672 tons per hour, while the total computational time used for the solution is 471.40 seconds. Here, the non-
dominated solution set ranges from $535.22 to $693.58 per hour, and from 0.2672 to 0.2674 tons per hour. In
this case, when a collective non-dominated solution set is constructed, the best compromise solution of this set
is from the non-dominated solution set of the Fidelity 1 with a cost of $538.38 per hour and emissions of
0.26739 tons per hour. The use of Fidelity 1 also produces satisfactory results with savings in computational
time of 263.39 seconds.

In the case where loads vary up to 9%, the results produced by both fidelities have some similarities to those
where loads change up to 3%. The best compromise solution set obtained from the simulation running at
Fidelity 2 dominates the best compromise solution obtained from that of running at Fidelity 1. However, the
best compromise solution from the collective non-dominated solution set is the solution with least emissions
from the Fidelity 1. This indicates that even when load changes are as significant as 9%, the simulation running
at Fidelity 1 has reasonable results, while enabling savings of 468.78 seconds in computation.
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Under the three cases evaluated in this scenario, the solution with the least emissions from the non-
dominated solution set of the sub-grid optimization procedure is part of the collective non-dominated solution
set. Therefore, it can be concluded that when the changes in the loads are within the considered sub-network,
the least emissions solution from the non-dominated solution set obtained from Fidelity 1 is a viable
operational alternative that runs 354.5% faster that of Fidelity 2.

4.2. Scenario 2: Load Variation Occurs throughout the Entire Network

In this scenario, we consider the cases where load changes may occur throughout the entire network up to
3%, 6% and 9%, respectively. When the loads vary up to 3% and the fidelity selection algorithm runs the
simulation at Fidelity 1, a best compromise solution (shown in light green in Figure 6) that has a cost of
$631.46 per hour with emissions of 0.2673 tons per hour is achieved. The total computational time used for this
simulation is 178.48 seconds. Here, the non-dominated solution set (green in Figure 6) ranges from $601.39 to
$667.96 per hour in terms of cost and from 0.2672 to 0.2673 tons per hour in terms of emissions. If the fidelity
selection algorithm runs the simulation at Fidelity 2, the best compromise solution (light blue in Figure 6) has a
cost of $636.34 per hour with emissions of 0.2672 tons per hour, while the total computational time used for
the simulation is 536.20 seconds. When the collective non-dominated solution set is constructed, the best
compromise solution is also the least emissions solution from the non-dominated solution set of the one
obtained from Fidelity 1 (red in Figure 6). For this scenario, it can be concluded that running the simulation at
Fidelity 1 produces satisfactory results with savings of 357.72 seconds in computational time.

Non-dominated Solution Set Non-dominated Solution Set
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Fig. 6. 3% load changes throughout the entire grid Fig. 7. 9% load changes throughout the entire grid

When the loads vary up to 6% and the fidelity selection algorithm runs the simulation with Fidelity 1, the
best compromise solution has a cost and emissions of $668.33 and 0.2672 tons per hour, respectively. The total
computational time used for the simulation is 183.61 seconds. If the fidelity selection algorithm runs the
simulation at Fidelity 2, the best compromise solution has a cost of $685.87 per hour with emissions of 0.2672
tons per hour, with total computational time of 663.13 seconds. In this case, when the collective non-dominated
solution set is constructed, the best compromise solution is also the least emissions solution from the non-
dominated solution set obtained from the simulations running at Fidelity 1 with savings of 479.52 seconds in
computational time. For the case when loads vary up to 9%, the best compromise solution obtained from the
simulation running at Fidelity 2 is also the best compromise solution of the collective non-dominated solution
set (shown in light blue and red in Figure 7). On the other hand, while the simulation running at Fidelity 1
produces 419.70 seconds of savings in computational time, very few of the solutions appear in the collective
non dominated solution set.

In conclusion, the least emissions solution from the non-dominated solution set obtained from the simulation
running at Fidelity 1 becomes a viable operational alternative in this scenario when the changes in the loads are
up to 6% at each bus. Otherwise, the results obtained from the simulation running at Fidelity 2 are superior to
that of the simulation running at Fidelity 1.
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5. Conclusion and Future Work

In this work, a DDDAMS framework involving state-of-the-art information technologies, including data
driven simulations, grid computing, web services, sensor network, and database has been presented for
environmental and economic dispatch control in distributed power networks. To enable adaptive fidelity
switching of the DDDAM-Simulation against available computational resources and sensory updates from the
real system, two algorithms have also been developed, including a state estimation algorithm, and a culling and
fidelity selection algorithm. The proposed framework has been demonstrated on a modified IEEE-30 bus
system. Results revealed that when load variations within the considered sub-network is less than 9%, the
simulation should be run at Fidelity 1 (only modifying the dispatch of the sources in this sub-network and the
swing bus), in order to have accurate results while at the same time saving significantly from computational
resources. Extensions to this work are possible in the methodological and technological aspects.
Methodological extensions can be performed in organization of the simulation into numerous fidelities, and the
role of information sharing. Technologically, the effect of integrating high-speed sensor networks into the
DDDAMS system on the system performance can be studied.
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