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Abstract  

The generalized optical remote sensing tracking problem for an object moving in a dynamic urban environment is complex. Two 
emerging capabilities that can help solve this problem are adaptive multimodal sensing and modeling with data assimilation. 
Adaptive multimodal sensing describes sensor hardware systems that can be rapidly reconfigured to collect the appropriate data as 
needed. Imaging of a moving target implies some ability to forecast where to image next so as to keep the object in the scene. 
Forecasts require models and to help solve this prediction problem, data assimilation techniques can be applied to update executing 
models with sensor data and thereby dynamically minimize forecast errors. The direct combination of these two capabilities is 
powerful but does not answer the questions of how or when to change the imaging modality. The Dynamic Data-Driven 
Applications Systems (DDDAS) paradigm is well-suited for solving this problem, where sensing must be adaptive to a complex 
changing environment and where the prediction of object movement and its interaction with the environment will enhance the 
ability of the sensing system to stay focused on the object of interest. Here we described our work on the creation of a modeling 
system for optical tracking in complex environments, with a focus on integrating an adaptive imaging sensor within the system 
framework.  
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1. Introduction  

The general problem of remote airborne object tracking is to detect, identify, and track vehicles and pedestrians of interest 
in an urban environment. Constant surveillance through video imagery interpreted by human analysts is successful in this 
task, but is resource intensive and limited by electro-optical (EO) visible and infrared (IR) imaging phenomenology. For 
example, these systems require high spatial resolution to perform, which limits the achievable field of view and ground 
coverage. A cluttered urban environment is also particularly challenging due to the presence of man made structures casting 
shadows during the day and serving as confounding thermal sources for infrared systems operating at night. It is generally 
recognized that this challenging problem can be better addressed through the use of multiple modalities, such as multi- or 
hyperspectral and polarization imaging (MSI, HSI, and PI), which bring to bear additional phenomenological features to 
enhance robustness across varying environments.  
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However, just using these multiple modalities in parallel does add to data volumes and system complexities that are 
generally unnecessary and not an optimal use of sensors.  

Two emerging capabilities that can help solve this general problem are adaptive multimodal sensing and modeling with 
data assimilation. Adaptive multimodal sensing describes sensor hardware systems that can be rapidly reconfigured to collect 
the appropriate data, which will change over time. This adaptive sensing capability can drastically reduce data volumes by 
enabling the collection of only the most appropriate data given the time and space-dependent conditions for imaging. 
However, imaging of a moving target also implies some ability to adjust the imaging to object movement, that is, to 
forecast where to image next so as to keep the object in the scene and to simultaneously adjust the detection algorithm. 
Forecasts require models and to help solve this prediction problem, data assimilation techniques can be applied to update 
executing models with sensor data and thereby dynamically minimize forecast errors. The direct combination of these two 
capabilities is powerful but does not answer the questions of how or when to change the imaging modality, nor how to 
process the data to most efficiently identify and track the object of interest. Further, while data assimilation can provide an 
optimized answer for a given set of input data, a more accurate answer might be found with a different data set.  

A comprehensive solution that integrates and expands on these imaging and data assimilation capabilities exists in the 
Dynamic Data Driven Applications Systems (DDDAS) paradigm. In this paradigm an executing application updates using 
data assimilation techniques and this new solution gives direction to an adaptive sensing system to collect a new set of data 
that may specifically reduce forecast uncertainty. Here we describe our work to develop such a system with a focus on the 
integration of the required image processing and analysis necessary to incorporate the adaptive imaging sensor into the 
DDDAS  

2. Approach  

Our general framework for this work is independent of the particular application and consists of the three main functions: 
data collection, forecasting, and sensor tasking; along with the three interfaces between these functions: the model objective 
function, the data needs assessment, and the modality and acquisition requirements (Figure 1). The six components represent 
the focus areas of research necessary for the development of the DDDAS. The following sections describe further detail about 
each of the six 
components.  

Figure 1. General 
modeling framework 
for the system.  
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2.1. Data Collection  

Many optical imaging systems are currently used to track vehicles or dismounts, with the majority being singleband, 
single-modality systems. These include panchromatic visible (EO) or midwave infrared (IR) sensors. However, there are 
situations where bringing multiple modalities to bear on the problem would enhance the ability to maintain track and reduce 
false or spurious tracks. For example, spectral imaging can key on unique spectral reflectance characteristics of the targets of 
interest, as well as use the additional information from measurements of the background. Also, it is well known polarimetric 
imaging can enhance the contrast of man-made versus natural backgrounds due to the frequent polarizing specular reflections 
off of metal or glass components of a vehicle.  

Through ongoing and related research on multi-modal imaging, we have been developing detailed models of adaptive 
multimodal sensors. One such sensor concept is shown in Figure 2 as an array of 2x2 superpixels, each of which contains a 
tunable single-pixel Fabry Perot spectrometer [1], as well as three wire-grid polarizers oriented such to collect polarization 
intensity imagery [2,3]. On the right of Figure 2 is one approach to providing the vertical motion on a pixel-by-pixel basis 
for the Fabry Perot devices with semi-transparent mirrors on top and bottom, and place directly over a detector. This sensor 

concept allows collection of tunable spectral and Stokes vector imagery for each pixel in the field-of-view.  

Figure 2. Concept for integrated MEMS single-pixel spectrometer and imaging polarimeter.  

The flexibility of collecting different wavelengths across the array, along with selecting different wavelengths versus time 
for a given pixel, creates the opportunity for adaptive sensing driven by the application task at hand and derived data 
requirements. Also, given the relatively limited field of view of a single focal plane system, there is the opportunity for 
pointing or commanded data acquisition within an area of reconnaissance. This adaptive sensing offers the promise of 
optimally collecting only the necessary data (thus optimizing the allocation of sensor assets as well as reducing data 
communication and storage requirements) but requires sophisticated automated intelligence to task properly. Thus, the 
adaptive multimodal sensor is a prime candidate for use as part of a DDDAS system.  

Another version of an adaptive sensor that was studied as part of a previous PhD thesis at RIT [4] combines polarization 
imaging with multiple pixel spectrometry. This instrument is a conceptual follow-on to the existing RIT Multi-Object 
Spectrometer (RITMOS) built at RIT [5]. In this case, the imaging channel has the same 2x2 superpixel design with 3 wire-
grid polarizers as above, but the Fabry-Perot spectrometer is replaced with a simple digital micromirror. The micromirror can 
be selectively commanded to reflect light for that spatial pixel through the spectrometry channel to be dispersed across one 
dimension of a two-dimensional focal plane. While only one mirror can be used along that dimension, mirrors corresponding 
to the other dimension can reflect light from other parts of the scene into the spectrometry channel, thereby achieving adaptive 
multi-object spectrometry. These instrument models will serve as the starting point for simulated data collections as part of 
the DDDAS. In addition, thermal infrared imagers will be implemented as we add modalities to the study.  

To support the development of scenarios for tracking in a complex environment, we will use imagery generated by the 
Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. This first-principles synthetic  
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image generation model can render very realistic image, EO, multispectral, hyperspectral, IR, polarimetric, lidar, and SAR 
imagery to support sensor design trade studies and to generate image sets for algorithm testing [5-8]. This modular code 
performs specific tasks such as predicting bi-directional reflectance functions (BRDF), computing time and material dependent 
surface temperature values, incorporating the atmospheric contribution (MODTRAN), and computing the dynamic viewing 
geometries of scanning instruments on moving platforms.  

Over the past few years, the DIRSIG model has been used increasingly as a hardware simulator, allowing the user to create 
a very detailed description of the sensing platform. These features allow the users to simulate the raw data produced by the 
imaging system, which can then be used to exercise the processing pipelines used to generate final image products (Figures 3 
and 4). Recently, DIRSIG has been integrated with a traffic mobility simulator SUMO (Simulation of Urban Mobility) to 
create dynamic moving imagery [9,10]. We plan to build on these scenarios and include not only moving vehicles but also 
moving pedestrians, together with simulated imagery collected at varying resolutions and from multiple platforms including 
the multimodal sensor. Thus, DIRSIG lies at the core of our capability for developing and testing a system that can operate 

with a variety of imaging modalities.  

Figure 3. DIRSIG simulations of urban scenes. The rendering is RGB, but the objects have full spectral properties. A. Oblique overhead view of urban 

center with shadows and obscurations. B. Street level view showing clutter such as vehicles, road paint, light poles, signs, stop lights, and trees.  

Figure 4. DIRSIG simulation of a desert industrial scene. The rendering is RGB, but the objects have full spectral properties.  
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2.2. Observation Function  

The observation function interface reconciles new data with the model state variables of the forecast model in the data 
assimilation step. In prior work with remote sensing data we considered two possible approaches to implementing the 
observation function step [11]. In one case the approach is inversion of the remote sensing image data through an algorithm 
that classifies or otherwise results in a data product that describes the environment, such as temperature or a class map. This 
output is compared directly to the corresponding variable in the forecast model state in the data assimilation step. This 
approach is heavily reliant on signal processing. In the second approach the model state variables are used in a forward model 
to create a synthetic observation, which is compared directly to the remotely sensed image data. The forward modeling 
approach has advantages in maintaining physical information dependent on the 3-dimensional nature of the field of regard. In 
contrast, the output of most inversion algorithms for remotely sensed image data produce mapped 2-dimensional output with 
a corresponding loss of 3dimensional information. For this project we use the forward modeling approach and leverage the 
synthetic image generation capabilities of DIRSIG in creating the observation function similar to our previous work [12].  

2.3. Forecasting Model  

Object tracking generally uses particle filtering [13,14]. We will assess a variety of particle filter models for suitability 
within our framework. Particle filters (PFs) are one method of Monte Carlo state estimation. They share many features with 
ensemble Kalman filters, most notably that both use an ensemble of model realizations (called particles) that describe the 
PDF of the state. In a Kalman filter the PDF is assumed to be Gaussian and the ensemble is used to parameterize the 
distribution, while no assumption of the PDF is made for PFs and the distribution is approximated by some 
parameterization such as a sum of delta functions or sum of Gaussians, where N is the number of particles used.  

As with all data assimilation, the PF combines observations with a prior estimate of the state by applying Bayes’ rule to 
create a posterior estimate of the state and its associated PDF. This gives new weights to all of the particles and writes the 
PDF of a state given a set of observations. These new particles are then moved forward in time by applying a forecast model. 
At this new time, new observations are then used to improve the state estimate. For many target tracking applications, a very 
simple random walk model is used to update the particles. Here, we will utilize sensor and previously known information 
about road networks and other infrastructure to develop a more sophisticated model for the motion of the target. Once applied 
to all of the particles, the result is an estimate of the PDF of the signal emitted by the target. In this work, we will 
incorporate this information as another component of the utility function for collecting hyper spectral data. In this way, when 
the particle filter PDF is telling us that we have reasonable certain knowledge of the location of the target, we can continue 
observing with less expensive methods. One the other hand, when the filter tells us that we have greater uncertainty in the 
location of the target, the hyperspectral sensor can turned on to collapse the PDF.  

Given an appropriate forecast model for the target tracking application, the forecast is the process of estimating the 
kinematic state of single or multiple, agile ground vehicles or pedestrians in the presence of clutter, dropped measurements, 
confusable vehicles, environmental occlusion, and ambiguous movement. A critical phase in the tracking process is the 
association of new measurements with existing tracks. The tracking system can employ various high-level association 
constructs to allow for statistics-based gating, multidimensional assignment, and deferred decision-making within the forecast 
decision. However, the fundamental cost Ci,j to associate a track i with a measurement j is the key, as shown below [4].  

Ci,j  = µKC
K

i,j +ΣµFC
F

i,j  

Here, C
K

i,j is a normalized kinematic cost based on the Mahalanobis distance, and C
F

i,j are likewise normalized costs based on statistical 
distances in an n-dimensional feature-space. The weighting terms µ establish the relative importance of the kinematic K and 
feature association F costs. The critical importance of this cost function is that it is a mechanism for incorporating multi-
modal information. For example, it is well known that HSI instruments provide high-saliency feature measurements for many 
classes of ground vehicles. Hence, an HSI feature-aided  
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tracking system has the potential to more accurately associate measurements with and subsequently perform with longer 
overall track life and higher track purity metrics. These assumptions are predicated on the availability of feature data, i.e., full 
spectral information, for both measurements and track state. While many realizable instruments always collect full HSI 
information throughout their fields of view, there is generally a design-time tradeoff such as ground sample distance or scan 
rate that makes tracking difficult. Our approach focuses on adaptive modality selection of an instrument that collects high-rate 
panchromatic or polarization imagery for the sake of tracking, but allows some pixels to collect HSI data as required. Thus, 
the cost function provides a means to make the critical step of a true DDDAS where the examination of the model state leads 
to the near real-time (rather than design-time) trade-off assessment of when, where, and what data to collect constrained to the 
capabilities of the adaptive sensor.  

2.4. Data Needs Assessment  

For the generalized tracking framework, the data needs assessment interface has two critical components that are at the 
heart of the DDDAS paradigm. The first data needs assessment component is an assessment of the errors in the model state 
or the forecast. In the tracking case these errors might include errors in detection, in time, or in space. The error in detection 
case refers to the target object itself – has the tracking system managed to maintain focus on the target of interest in the 
presence of other objects that have similar features or when temporary obscurations of the target have occurred? The errors in 
time are critical during obscurations – how well does the forecast model predict when the target will return to view? The 
errors in space include all standard errors related to the spatial image – primarily errors in georegistration and errors in target 
detection or classification that assign incorrect target or background pixels. Methods for assessing all of the above errors are 
known and we will apply these to our problem, although current work continues on understanding data assimilation errors in 
particular [15,16].  

The second data needs assessment component is unique to our adaptive system. In the case of an adaptive sensing system, 
an assessment has to be made of the movement of the target from one observation scenario where a given imaging modality 
provides the best tracking to another observation scenario where a different imaging modality would provide better tracking. 
Here, the critical data assessment outcome is to make the decision to change the imaging modality. For example, consider 
the case of a tracked object that moves from an open area with few obstructions into an area with taller buildings casting 
shadows. A sensor operating in the reflective portion of the spectrum will suddenly have compromised image quality due to 
loss of signal to noise in shadows. Another example might be a vehicle moving from a paved road surface to an unpaved 
surface with aerial dust raised by the background traffic producing an obscuration. What are the consequences of these 
imaging scenarios with regard to imaging modality? A valid system should be capable of addressing these types of scenarios 
as they develop and tasking a different imaging modality that will better track the target of interest.  

Successfully demonstrating this capability can leverage information already in hand and information collected at the time 
of the tracking exercise. Information already in hand may include static data in a GIS, meteorological observations, and low 
spatial resolution multispectral images. Or we can consider data from the tracking sensor itself, which could be particularly 
effective for a RITMOS type sensor [5]. Here, the multi-object spectrometer could be used to assess the background just as 
readily as it could assess the target signature. The analysis of the observation scenario can be considered a traditional image 
classification effort to describe the background that the target moves through.  

A variety of current research at RIT is devoted to understanding the data content of MSI or HSI images and designing 
classification methodologies applicable to complex urban scenes [17,18]. One approach that is very applicable to our problem 
is the use of tiled images to reduce computation while focusing mainly on the parts of the background where the target is 
forecasted to move toward [19]. Our other applicable work includes detection algorithms with background suppression [20] 
and characterization of spectral spaces and change detection methods based on graph theory and implemented with tiling 
[21,22].  
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2.5. Sensor Tasking  

Based on the data needs assessment derived from the system application model, a mechanism is required to determine 
how best to task the sensor to collect the necessary data. This functional block in the DDDAS needs to prioritize and rank 
data acquisitions across modalities, wavelengths, and locations within the focal plane and the field-of-regard. One way to 
pursue this optimization is through the use of a Sensor Resource Manager (SRM) using various quantifiable metrics to 
obtain the sensor allocation priorities.  

Previous research [4,23] has explored the use of utility functions in the context of metrics for hyperspectral pixel data 
collection. As described in [4], the utility Uij(t) of collecting hyperspectral data at pixel ij at time t can be defined as:  

Uij(t) = C
D

U
D

(t) + C
N

U
N

(t) + C
A

U
A

(t) + C
M

U
M

 + C
T

U
T

 (t)  

such that 
Φ  ΦΦ 

U ij(t) ∈ [0,1],  Φ∈ {D,N,A,M,T], ΣC = 1, C≥ 0∀Φ  

The values of C are the relative importance or weighting of the different components of utility, U, where the components 
are defined as:  

• D -Default value that every target of interest receives which gradually decreases towards 0 as we consider pixels 
farther from the predicted location of the target track.  
• N -New model utility which is a function of the appearance of new or reacquired targets that need to be sampled in 
order to build a target feature model.  
• A -Association utility defined for closely spaced targets where track state and the related uncertainty provide a 
measure of association ambiguity.  
• M -Missed measurement utility which is a function of the number of missed detections for the kinematic tracker due 
to occlusion or shadow.  
• T -Model age which is a function of the time since the last spectral model measurement was incorporated.  
 

Previous research has used genetic algorithms with representative training data to obtain values for the component 
weighting coefficients, C [23].  

2.6. Modality and Acquisition Requirements  

An interface is necessary between the sensor tasking SRM and the actual sensor system to properly execute the prioritized 
data acquisitions within the DDDAS update cycle. This interface will have to take the prioritized sensor data needs and 
develop a sequential set of commands for sensor modality, sensor settings, platform location, platform orientation, and 
coverage. For example, the sensor tasking module may say polarization imagery is required from a zenith view angle of 30º 
and azimuth of 120º spanning an area of 1 square kilometer centered on a specific location. This execution of this requirement 
must take into account the current position of the sensor and the capabilities of the platform to determine the feasibility of 
acquiring the data within the necessary time frame. If not feasible, then the interface must feed that information back to the 
sensor tasking module and consider the next priority. Alternatively, it may be that the highest priority sensor tasking is only 
feasible after satisfying a lower priority tasking. Automated algorithms must be developed to consider and arbitrate between 
these various task implementation scenarios. General approaches for this will be explored, along with specific 
implementations for selected demonstrations. One approach that will be investigated is the adaption of previous multisensor 
tasking research [24] to our research domain including multiple views collected by a single sensor.  

3. Summary  

The general framework for object tracking described above, with its modules and interfaces provides a logical description 
of the necessary work required to construct an adaptive tracking system. Previous and ongoing work has  
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addressed many aspects of the modules and interfaces, setting the stage for assembly and demonstration of a functioning 
framework that then can be tested under increasingly realistic and complex tracking scenarios by leveraging DIRSIG 
simulations.  

The anticipated outcomes of the proposed work are centered on a creating a generalized modeling system for tracking in 
complex environments. In overview, the work plan will specify effort on designing data processing algorithms appropriate to 
adaptive sensors and creating a method for feedback control from the executing application to the adaptive sensor. These 
development tasks will leverage the DIRSIG model rather than relying on field data to demonstrate the ability of the 
modeling system to control adaptive imaging within a dynamic synthetic image dataset.  

The flexibility of collecting different wavelengths across the array, along with selecting different wavelengths versus time 
for a given pixel, creates the opportunity for adaptive sensing driven by the application task at hand and derived data 
requirements. Also, given the relatively limited field of view of a single focal plane system, there is the opportunity for 
pointing or commanded data acquisition within an area of reconnaissance. This adaptive sensing offers the promise of 
optimally collecting only the necessary data, with direction from the model, in a truly DDDAS fashion.  
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