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Abstract

In this paper, we describe a programming model to enable reasoning about spatio-temporal data streams. A

spatio-temporal data stream is one where each datum is related to a point in space and time. For example, sensors

in a plane record airspeeds (va) during a given flight. Similarly, GPS units record an airplane’s flight path over the

ground including ground speeds (vg) at different locations. An aircraft’s airspeed and ground speed are related by the

following mathematical formula: vg =
√

v2
a + 2va · vw · cos(αa − αw) + v2

w, where va and αa are the aircraft airspeed

and heading, and vw and αw are the wind speed and direction. Wind speeds and directions are typically forecast in

3,000-foot height intervals over discretely located fix points in 6-12 hour ranges. Modeling the relationship between

these spatio-temporal data streams allows us to estimate with high probability the likelihood of sensor failures and

consequent erroneous data. Tragic airplane accidents (such as Air France’s Flight 447 on June 1st, 2009 killing all 216

passengers and 12 aircrew aboard) could have been avoided by giving pilots better information which can be derived

from inferring stochastic knowledge about spatio-temporal data streams. This work is a first step in this direction.
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1. Introduction

Spatio-temporal data streams, where each datum is related to a point or a range of space and time, are pervasive.

We see such data streams in many occasions in our daily lives, for instance, temperatures, prices of gasoline, flight

schedules of airplanes, and so on. Massive amounts of spatio-temporal data are continuously generated by sensors,

IT systems, or computer programs, and consumed by humans; however, today’s most commonly used programming

languages (e.g., C/C++, Java, PHP, JavaScript, python, etc.) do not have first-class support for space and time since

they are designed to be general-purpose. The downside of the general-purpose approach is the complexity and size of

code. Since these programming languages are imperative, meaning that we have to use for, if, or while to control the

flow of the programs and explicitly handle state, the code can get large and complex easily.

In contrast to the general-purpose approach, if we know a specific problem domain very well and want to provide

first-class support for key domain concepts (such as space and time), we can take a domain-specific approach. The
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code written in the domain-specific approach is much simpler and more declarative as in logic programming lan-

guages [1] and therefore simpler to write, read, and reason about, but it is generally less expressive, than code written

in general-purpose programming languages.

Operating an aircraft is a complicated task since there are a lot of complex correlations between the instruments

in a cockpit. If some failure happens during a flight, it is not easy to find the cause of the failure by looking at the

available (potentially partially erroneous) data , and also, a misinterpretation of instrument readings could even lead to

a tragic accident [2]. We illustrate our programming model with a flight planning system that reports potential sources

of data problems such as mechanical failures or extreme weather conditions. An explicit mathematical model of data

co-relationships can with high probability signal data errors, potentially providing pilots with better information in

emergency scenarios, allowing them to take appropriate actions in a timely manner, and ultimately reaching their

destination safely and efficiently.

In this paper, we present our initial effort on designing a programming model for spatio-temporal data streaming

applications, aiming to apply the model to a flight planning system. The model provides first-class support for space

and time specific operations including data selection and interpolation when no data is available for a certain location

and time.

2. Motivation

Auto-pilots cannot take the right action when the data they are receiving is out of date or incorrect. This may have

led to the tragic crash of Air France flight 447, killing all 216 passengers and 12 aircrew [2]. The records from the

crash have suggested that the pilots lost control of the airplane because they raised the nose of the airplane when it

should not have been brought up. Many experts now understand that the airplane went into clouds with thunderstorms

and its iced speed sensors provided inaccurate information to the autopilot, causing it to disengage. The pilots then

incorrectly reacted to the emergency by raising the nose of the plane when in fact it needed to go down to break the

stall.

An active redundant data-driven flight system may help prevent crashes caused by sensor or other data errors. For

example, by comparing the airspeed data to the ground speed data, a flight system would be able to fact check a bad

airspeed reading, assuming reasonable constraints on the wind speed. If the pilot is only operating by airspeed data

alone, they would have no way of knowing that there is an error in the system and they would respond to the incorrect

data, upsetting the balance of the plane. The ground speed data would instead provide a fact checking mechanism

because if airspeed were swiftly changing, ground speed would be doing the same. If airspeed is changing, but ground

speed remains unchanged, the more active flight system would be able to notify the pilot of the discrepancy, allowing

for better informed decision making.

Our goal is to develop a data streaming programming model that makes explicit the connections between different

spatio-temporal data streams. Flight systems developed using our model would make explicit the redundancies in

the data and allow the different data streams to essentially fact check each other greatly reducing the possibility of

accidents. The proposed spatio-temporal data streaming programming model can also be applied to other domains

generating space and time specific data.

3. Spatio-Temporal Data Streaming Programming Model

3.1. Programming Model

Our proposed programming model is designed for applications that handle spatio-temporal input data streams as

shown in Figure 1. In this model, the application gets data (d′1, d
′
2, . . . , d

′
n) from the data selection module, which takes

incoming data streams (d1, d2, . . . , dn) as inputs, and then the application indefinitely generates outputs (o1, o2, . . . , om)

and data errors (e1, e2, . . . , el) based on an application model. Each input data stream di(x, y, z, t) is a function of

location and time. The number of arguments of di varies depending on dimensions of the location information, that is,

di(t) for 0-D (i.e., no location support), di(x, t) for 1-D, di(x, y, t) for 2-D, and di(x, y, z, t) for 3-D. Some data streams

are coming in real-time whereas some predicted information (e.g., weather forecasts) is associated with future time

periods.
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Figure 1: Programming model handling spatio-temporal input data streams

Table 1: An example of a weather forecast input data stream

Location Altitude Time Chance of Icing

(lat1, long1) − (lat2, long2) ( f rom) − (to)

(42.73, -73.69)-(42.70, -73.66) 8000 ft. 01/30/2012:10:00-12:00 (GMT) 50%

(42.73, -73.69)-(42.70, -73.66) 8000 ft. 01/30/2012:12:00-14:00 (GMT) 60%

(42.73, -73.69)-(42.70, -73.66) 8000 ft. 01/30/2012:14:00-16:00 (GMT) 80%

Table 1 shows an example of a weather forecast input data stream coming to the Data Selection module. As

noted from the table, the location information is given by regions where each region is represented by two horizontal

locations (latitude, longitude) and an altitude, and the time information is given by time periods where each period

is represented by two time points in GMT. Since not all the data is on the table, for example, chance of icing is not

defined when the time is 01/30/2012:09:00 (GMT); however, we can define data by selecting or interpolating the

existing data when no data is defined for a given location and time. In our programming model, the Data Selection

module stores some amount of incoming data stream until it becomes out of date. The application acquires the selected

or interpolated data (d′1, d
′
2, . . . , d

′
n) from the Data Interpolation module at a certain rate specified in the application

and computes both outputs and data errors. The application continues this computing process in an infinite loop until

the user requests to stop the computation. The Data Selection module essentially allows an application to view a set of

heterogeneous data streams as a homogeneous data stream, and therefore enables a separation of concerns: application

programmers can focus on their application model.

3.2. Support for Spatio-Temporal Data Selection

We define two types of data selection and one data interpolation method for the location and time as shown below.

These operations are applicable to either single variables (i.e. t, x, y, or z) or multiple variables (i.e. combinations of

t, x, y, and z. By using these operations, application programmers can use locally related data even in the case when

the given data is sparse.

• closest
This method takes a 1-D argument (i.e., t, x, y, or z) to find the data closest to a given location or time. Figure

2 shows examples of selecting closest data to the current time and location respectively. In Figure 2(a), when

selecting the closest time to the current time tcurr, di(tcurr) is not defined, but di(t) is defined for {t | t1 ≤ t ≤
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t2, t3 ≤ t ≤ t4, t5 ≤ t ≤ t6}. Since t4 is closest to tcurr, we define d′i (tcurr) � di(t4). Similarly, we define

d′i (xcurr) � di(x3) for the example shown in Figure 2(b).

Figure 2: (a) Selecting the closest time; (b) Selecting the closest x value

• euclidean
This method takes 2-D or 3-D arguments to find the data closest to a given location. Figure 3 shows an example

for the 2-D case, where data is not defined for the current location lcurr = (xcurr, ycurr), but are defined for l0, and

l1. Since lcurr is closest to l0 = (x0, y0) in Euclidean distance, we define d′i (xcurr, ycurr) � di(x0, y0).

Figure 3: Selecting the closest 2D region in Euclidean distance Figure 4: Linear interpolation

• linear interpolation
This method takes 1-D, 2-D or 3-D arguments to interpolate the defined data. It also takes another argument

ninterp to select closest ninterp data from a given location to interpolate. Suppose we have a situation shown in

Figure 4, where data is not defined for the current location lcurr = (xcurr, ycurr), but are defined for l0, l1, and l2.

Also, suppose that ninterp = 2, we select l0 and l1 since they are closer to lcurr than l2. In such a case, we linearly

interpolate the data defined for l0 and l1 by taking a weighted sum based on the Euclidean distance as follows:

d′i (xcurr, ycurr) � (1 − ‖l0 − lcurr‖
∑1

i=0 ‖li − lcurr‖
) · di(x0, y0) + (1 − ‖l1 − lcurr‖

∑1
i=0 ‖li − lcurr‖

) · di(x1, y1) (1)

Note that the equation (1) can be easily extended to n data points.

Multiple methods can be specified in the application program and they apply to the input data in order. If multiple

data get selected by one method (e.g., more than one closest point), a subsequent method takes that multiple data as

the input and further select data. If there still remains more than one data after applying all the methods, then we

implicitly apply linear interpolation to output the final value.

4. Spatio-Temporal Data Streaming Programming Language

In this section, we describe a spatio-temporal programming language by defining its grammar and showing two

example programs.
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4.1. Grammar Definition

A grammar definition for a declarative programming language following the proposed programming model is

shown in Figure 5. A program (Program) consists of four parts: a program name, inputs, outputs, and errors. The

program name is defined by a variable name (Var). The inputs can have multiple entries of Input, which is defined

by one or more input variables (Vars), a dimension of the inputs (Dim), and a data selection method described in the

previous section (Method). The outputs and errors are defined separately, but have the same output format (Output).
Output is defined by one or more output variables (Vars), mathematical expressions (Exps), and a time interval to

specify the frequency of the output (Time).

�

�

�

�

Program ::= program Var;
inputs Input*
outputs Output*
errors Output*

Input ::= Vars: Dim using Methods;
Output ::= Vars: Exps at every Time;
Dim ::= ’(t)’ | ’(x,t)’ | ’(x,y,t)’ | ’(x,y,z,t)’

Methods ::= Method | Method, Methods
Method ::= (closest | euclidean | interpolate) ’(’ Exps ’)’

Time ::= Number (nsec | usec | msec | sec | min | hour | day)

Exps ::= Exp | Exp, Exps
Exp ::= Func(Exps) | Exp Func Exp | ’(’ Exp ’)’ | Value
Func = { +, -, *, /, sqrt, sin, cos, tan, abs, ...}
Value ::= Number | Var
Number ::= Sign Digits | Sign Digits’.’Digits
Sign ::= ’+’ | ’-’ | ’’

Digits ::= Digit | Digits Digit
Digit = { 0, 1, 2, ...,9 }
Vars ::= Var | Var, Vars
Var = { a, b, c, ...}

Figure 5: Spatio-temporal data streaming programming language grammar

4.2. Example Programs

4.2.1. Simple Example
Here we show one of the simplest programs implemented by the proposed programming model. It takes two input

streams, a(t) and b(t), and outputs an error defined by e = (b′ − 2a′) every 1 second as shown in Figure 6. Note that

these two input streams are not associated to any location information.

An example specification of the above simple program is shown in Figure 7. In this example, there are two input

data streams in which each stream is a function of time. The data selection method used in the program is specified by

closest(t), which means that the program instructs the Data selection module to select the closest t to the current

time tcurr.

Errors behave differently depending on the input data streams, thus they tell us valuable information about the

information sources. Figure 8 shows three different types of errors generated by simulations of the simple example

program specification described in Figure 7. The assumption here is that every 1 ± ε seconds, the variable a’s input

comes as 1±ε, 2±ε, 3±ε, . . .whereas the variable b’s input comes as 2±ε, 4±ε, 6±ε, . . ., i.e., they hold the mathematical

relationship: b = 2 * a. In Figure 8(a), most of the time the error stays at zero, but there are several spikes due to

transient fluctuation of the data input timing. It happens occasionally since the use of closest(t) causes the Data

Selection module to select data at one second earlier or one second later than it is supposed to select. This type of
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error is unavoidable without a special synchronization mechanism between multiple data streams. Figure 8(b) shows

an example of the out-of-sync error. As shown in the graph, the error becomes consistently large at around 30 seconds

of the simulation time. This is because the variable a’s input data stream becomes consistently one second behind

the variable b’s input data stream. Figure 8(c) suggests more critical failure of the variable a’s input data source. At

around 40 seconds of the simulation time, the error starts growing linearly. This linear increase of the error explains

that the input data stream of the variable a stops coming after 40 seconds of the simulation time, which potentially

means that a critical failure occurred at the source of the variable a.

Figure 6: A simple application with temporal data streams

�

�

�

�

program twice;

inputs

a: (t) using closest(t);

b: (t) using closest(t);

outputs;

errors

e: (b - 2 * a)

at every 1 sec;

end;

Figure 7: A simplest program specification

Figure 8: Examples of errors generated by a simple example: (a) Timing transient error; (b) Out-of-sync error; (c) Data input failure

4.2.2. Flight Planning
This is an example of a simplified flight planning system. Suppose that sensors in a plane record airspeeds va

during a given flight and GPS units record the airplane’s flight path over the ground including ground speeds vg

at different locations. An aircraft’s airspeed and ground speed are related by the following mathematical formula:

vg =
√

v2
a + 2va · vw · cos(αa − αw) + v2

w, where va and αa are the aircraft airspeed and heading, and vw and αw are the

wind speed and direction. Also, we can compute crosswind velocity: vx = vw · sin(αa − αw). Therefore, given the

aircraft desired course αd, it is possible to compute the crab angle δ by using the formula (2) so that the aircraft can

use αa = αd + δ as the heading to maintain the desired direction under varying wind conditions. The above mentioned

relationship can be modeled as an application shown in Figure 9, which outputs the crab angle δ and error e that is the

difference between the monitored ground speed vg from GPS and the calculated one from va, vw, αa, and αw.

δ = arcsin(vx/vg) = arcsin

⎛
⎜⎜⎜⎜⎜⎝

vw · sin(αa − αw)
√

v2
a + 2va · vw · cos(αa − αw) + v2

w

⎞
⎟⎟⎟⎟⎟⎠ (2)
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Figure 9: A flight planning application model using the spatio-temporal data streaming programming model

A code example of the flight planning application is shown in Figure 10. In this example, there are three in-

put data streams in which each stream has two functions. Since each of these two functions has the same source

of information and arguments, they are declared as a single input data stream. In the case of the first input data

stream, there are two functions, wind speed(x,y,z,t) and wind angle(x,y,z,t), that share the same arguments

and information source (weather forecast). Data interpolation methods used for and wind speed(x,y,z,t) and

wind angle(x,y,z,t) are specified by euclidean(x,y), closest(t), and interpolate(z, 3). These meth-

ods apply in order: first, the closest x and y to xcurr and ycurr in Euclidean distance are selected; second, the closest t
to the current time tcurr is selected; and finally, the final value is linearly interpolated on the z-axis using up to three

closest data points to zcurr as specified in the argument.

�

�

�

�

program flightplan;

inputs

wind_speed , wind_angle: (x, y, z, t)

using euclidean(x, y), closest(t), interpolate(z, 3);

air_speed , air_angle: (x, y, z, t)

using euclidean(x, y), closest(t);

ground_speed , ground_angle: (x, y, z, t)

using euclidean(x, y), closest(t);

outputs

crab_angle: arcsin(wind_speed * sin(wind_angle - air_angle) /

sqrt(air_speed ^2 + 2 * air_speed * wind_speed *

cos(wind_angle - air_angle) + wind_speed ^2))

at every 1 sec;

errors

e: ground_speed - sqrt(air_speed ^2 + 2 * air_speed * wind_speed *

cos(wind_angle - air_angle) + wind_speed ^2))

at every 1 sec;

end;

Figure 10: A declarative specification of the flight planning application
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Figure 11: Normal conditions signature observed from a flight planning simulation

Figure 12: Pitot tube failure error signature observed from a flight planning simulation (the monitored airspeed starts decreasing at time = 5000

due to the pitot tube failure)

Example simulation results of the flight planning application generated from the program specification described

in Figure 10 are shown in Figure 11 and Figure 12. In this simulation, a simple autopilot system navigates an airplane

by using the crab angle received from the application. The airplane flies at 100 knots from Washington D.C. to Albany,

which is 281 nautical miles (323 miles) away. The simulation also takes into account the effect of winds. In a normal

condition, the autopilot successfully navigates the airplane to the destination with an ideal path as shown in Figure

11. The error of ground speed stays zero all through the simulation and the crab angle is almost constant (it actually

slightly increases to adapt the wind speed changes). Figure 12 shows an error signature caused by a pitot tube failure.

At time = 5000, a pitot tube starts icing and that causes the monitored airspeed to decrease gradually and gets almost

zero eventually, while the airplane keeps flying at 100 knots. As seen from the graph, the autopilot’s navigation does

not work successfully this time. We can see a clear signature of the error here: the ground speed error grows quickly

as soon as the airspeed start decreasing at time = 5000 and remains around 70 knots. The crab angle also grows up as

the airspeed decreases.

As we can see from the simulation, a pilot can benefit from this application by following the crab angle to con-

trol the direction of the airplane, and also monitoring the error output to see if there is a mechanical failure of the

instruments or the forecast information is wrong.

5. System Interaction

Figure 13 shows how a spatio-temporal application interacts with the system. The interactions are based on a

client-server model using Internet sockets in which the application works as a server and takes inputs from the clients

on a single port. It outputs some values to the specified output ports as well as error values to the specified error ports.
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Figure 13: System interaction of a spatio-temporal data streaming application

When executing a binary object generated from the program specification, we specify input, output, and error ports

as follows. In this example, the flightplan application illustrated in Section 4.2.2 takes an input data stream on the

port 10001 and sends output and error streams to the hosts specified by 10.0.0.1:20001 and 10.0.0.2:30001

respectively.

$./flightplan -input 10001 -outputs 10.0.0.1:20001 -errors 10.0.0.2:30001

The input, output, and error data streams share the same format shown in Table 2. The first line is used to declare

one or more variables (var0, var1,...) in a single data stream. The values of the declared variables start from the

second line. The data stream can have multiple values (value0, value1,...) with various spatial and temporal

combinations: ex1 is defined for a 3-D region and a time interval; ex2 is defined for a 2-D point and a time interval;

ex3 is defined for a 1-D interval and a particular time; ex4 is defined for no location and a particular time. All lines

have to end with an end-of-line marker (\r\n). Especially, the last line have to have only one end-of-line marker.

Note that the data format for input is compatible with output and error, that is, we can connect either an output or

error port to an input port of another application.

Table 2: The data stream format of input, output, and error

first line #var0, var1,...\r\n
after second line ex1) x0,y0,z0-x1,y1,z1:t0-t1:value0,value1,...\r\n

ex2) x,y:t0-t1:value0,value1,...\r\n
ex3) x0-x1:t:value0,value1,...\r\n
ex4) :t:value0,value1,...\r\n

last line \r\n

.

6. Related Work

Spatio-temporal constraint logic programming has been proposed. STACLP [3] offers first-class support for rep-

resenting and reasoning about spatial and temporal data. A similar logic language to STACLP, MuTACLP [4][5], is

used to analyze geographical data especially for GIS (Geographical Information Systems). Both STACLP and MuTA-

CLP are implemented based on a Prolog system. Programming languages that support probabilistic reasoning have

also been proposed. PRISM[6] is a logic-based language that integrates logic programming and stochastic reasoning

including parameter learning. PRISM is capable of parameter learning from a given set of data and estimates the

probability to best explain the data. PRISM is also built on top of a Prolog system. Our proposed programming

language is also highly declarative and it is to generate code that takes as inputs, spatio-temporal data streams.

There are programming languages for time-critical systems such as automatic control and monitoring systems.

LUSTRE [7] [8], Giotto [9], and Esterel[10] are included in this category. These programming languages are declar-

ative and designed to respond input events synchronously. Although their target systems are similar to ours, the main

focus of these languages is real time behavior and there is no special support for spatial information nor reasoning

capabilities.
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7. Conclusions and Future Work

We present a programming model for spatio-temporal data streaming applications. In particular, it has first-class

support for data selection and interpolation when no data is available for a given location and time. Towards our

primary goal of applying this programming model to flight planning applications, we have several future research

directions: 1) development of a compiler of the proposed language and a fully-functional application using real spatio-

temporal data to demonstrate the advantage of the proposed programming model; 2) learning error signatures for

common failures in aviation system, 3) adding the probability of data accuracy as inversely proportional to the spatio-

temporal distance between the current location and time and the defined data points; 4) studying stochastic reasoning

techniques and investigating the applicability of such techniques to spatio-temporal data streaming applications.
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