Applying a Dynamic Data Driven Genetic Algorithm to Improve Forest Fire Spread Prediction*

Mónica Denham, Ana Cortés, Tomàs Margalef, and Emilio Luque

Departament d’ Arquitectura de Computadors i Sistemes Operatius, E.T.S.E., Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) Spain

Abstract. This work represents the first step toward a DDDAS for Wildland Fire Prediction where our main efforts are oriented to take advantage of the computing power provided by High Performance Computing systems to, on the one hand, propose computational data driven steering strategies to overcome input data uncertainty and, on the other hand, to reduce the execution time of the whole prediction process in order to be reliable during real-time crisis. In particular, this work is focused on the description of a Dynamic Data Driven Genetic Algorithm used as steering strategy to automatic adjust certain input data values of forest fire simulators taking into account the underlying propagation model and the real fire behavior.

*This work has been supported by the MEC-Spain under contracts TIN 2004-03388 and TIN 2007-64974.