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Introduction
Most conventional learning methods use static 
data in the training set to construct a model or 
classifier. 
Active learning has an ability to update the 
model dynamically using new incoming data.
The objective of active learning for classification 
is to choose the instances or data points to be 
labeled and included in the training set. 
In many machine learning tasks, collecting data 
and/or labeling data to create a training set is 
costly and time-consuming. 



Introduction (cont.)

In tornado prediction, labeling data is considered 
costly and time consuming since we need to 
verify which storm-scale circulations produce 
tornadoes in the ground. 
The tornado events can be verified from facts in 
the ground including photographs, videos, 
damage surveys, and eyewitness reports. 
Based on tornado verification, we then 
determine and label which circulations produce 
tornadoes or not. 



Introduction (cont.)

Applying active learning for tornado 
prediction to minimize the number of 
instances and use the most informative 
instances in the training set in order to 
update the classifier would be beneficial. 



Objectives

To investigate the application of active 
learning with SVMs for tornado prediction 
using the Mesocyclone Detection 
Algorithm (MDA) and Near-Storm 
Environment (NSE) data.  
To compare this method to passive 
learning with SVMs where the next 
instances to be added to the training set 
are randomly selected using these data.



MDA & NSE
Mesocyclone Detection Algorithm (MDA) 
(Marzban and Stumpf, 1996)

The MDA attributes measure radar-derived velocity 
parameters that describe various aspects of the 
mesocyclone. 

Near-Storm Environment (NSE)  
(Lakshmanan et al., 2005) 

The NSE data described the pre-storm environment 
of the atmosphere on a broader scale than the MDA 
data, as the MDA attributes are radar-based.  
Information on wind speed, direction, wind shear, 
humidity lapse rate and the predisposition of the 
atmosphere to accelerate air rapidly upward over 
specific heights were measured in the NSE data.



Data and Analysis
The original data set was comprised of 23 
attributes taken from the  Mesocyclone
Detection Algorithm (MDA) data set.
Incorporate 59 attributes from the Near-
Storm Environment (NSE) data to the 
MDA data set. 
Therefore, the MDA+NSE data consist of 
82 attributes + 1 class attribute. 



Methodology

Support Vector Machines (SVMs)
Active Learning with SVMs
Measuring the Quality of the Forecasts for 
Tornado Prediction 



Support Vector Machines (SVMs)

The SVM algorithm was developed by 
Vapnik and has become a powerful 
method in machine learning (Boser et al., 
1992; Vapnik, 1995, 1998).
The objectives of SVMs (the primal 
problem) are to maximize the margin of 
separation and to minimize the 
misclassification error.



SVMs (cont.)
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Fig 1. Illustration of SVMs.



Active Learning with SVMs

Several active learning algorithms with SVMs have 
been proposed by Campbell et al. (2000), Schohn
and Cohn (2000), and Tong and Koller (2001). 
Campbell et al. (2000) suggested that the 
generalization performance of a learning machine 
can be improved significantly with active learning. 
Using SVMs, the basic idea of active learning 
algorithms is to choose the unlabeled instance for 
the next query closest to the separating hyperplane
in the feature space. 



Active Learning with SVMs (cont.)

In this paper, we choose the instances that 
are inside the margin of separation to be 
labeled and included in the training set. 
Since the separating hyperplane lies in the 
middle of the margin of separation, these 
instances will have an effect on the 
solution. 
Thus, the instances outside the margin of 
separation will be removed.



Active Learning with SVMs (cont.)

Suppose we are given an unlabeled pool 
U and a set of labeled data L. The first 
step is to find a query function f(L) where, 
given a set of labeled data L, we need to 
determine which instances in U to query 
next. 
This idea is called the pool-based active 
learning. 



Active Learning with SVMs (cont.)
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Fig. 2. Active learning with SVMs scheme.



Measuring the Quality of the 
Forecasts for Tornado Prediction 

In order to measure the performance of a 
tornado prediction classifier, it is important 
to compute scalar forecast evaluation 
scores such as the Critical Success Index 
(CSI), Probability of Detection (POD), 
False Alarm Ratio (FAR), Bias, and 
Heidke Skill Score (HSS), based on a 
“confusion” matrix or contingency table 
(Table I). 



Measuring the Quality of the 
Forecasts for Tornado Prediction 
(cont.)

             Observation
Yes No

Yes hit false alarm
Forecast a b

No miss correct null
c d

Table 1. Confusion matrix.



Measuring the Quality of the 
Forecasts for Tornado Prediction 
(cont.)

CSI = a/(a+b+c)
POD = a/(a+c)
FAR = b/(a+b)
Bias = (a+b)/(a+c)
HSS = 2(ad-bc)/[(a+c)(c+d)+(a+b)(b+d)]



Experiments
The data were divided into two sets: 
training and testing. 
In the training set, we had 382 tornadic
instances and 1128 non-tornadic
instances. 
In order to perform online setting 
experiments, the training instances were 
arranged in time order. 
The testing set consisted of 387 tornadic
instances and 11872 non-tornadic
instances. 



Experiments (cont.)

For both active and passive learning 
experiments, the initial training set was the 
first 10 instances consisted of 5 tornadic
instances and 5 non-tornadic instances.
At each iteration, new data were injected 
in a batch of several instances. 
Two different batch sizes, 75 and 150 
instances, were used for comparison. 



Experiments (cont.)

In passive learning with SVMs, all 
incoming data were labeled and included 
in the training set. 
Conversely, active learning with SVMs
only chooses the instances from each 
batch which are most informative for the 
classifier. Therefore, the classifier was 
updated dynamically at each iteration. 



Experiments (cont.)

The performance of the classifier can be 
measured by computing the scalar skill 
scores on the testing set. 
The radial basis function kernel with γ = 
0.01 and C = 10 was used in these 
experiments. 
The experiments were performed in the 
Matlab environment using LIBSVM toolbox 
(Chang and Lin, 2001)



Results

Fig 3. The 
results of CSI, 
POD, FAR, Bias, 
and HSS on the 
testing set using 
active and 
passive learning 
at all iterations. 



Results (cont.)

Fig 4. The last iteration results with 95% 
confidence intervals on the testing set.



Results (cont.)

Fig 5. Diagrams of training set size vs. iteration 
for the batch sizes of (a) 75 and (b) 150 
instances. 



Results (cont.)

The results showed that active learning 
significantly reduced the training set size 
to attain relatively the same skill scores as 
passive learning. 
Active learning with SVMs reduces the 
training set size by 62.6% and 60.5% 
using the batch size of 75 and 150 
instances, respectively.



Conclusions
In this paper, active learning with SVMs was 
used to discriminate between mesocyclones that 
do not become tornadic from those that do form 
tornadoes.  
The preliminary results showed that active 
learning can significantly reduce the size of 
training set and achieve relatively similar skill 
scores compared to passive learning. 
Since labeling new data is considered costly and 
time consuming in tornado prediction, active 
learning would be beneficial in order to update 
the classifier dynamically. 
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