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Abstract. In this paper, active learning with support vector machines (SVMs) is 
applied to the problem of tornado prediction. This method is used to predict 
which storm-scale circulations yield tornadoes based on the radar derived 
Mesocyclone Detection Algorithm (MDA) and near-storm environment (NSE) 
attributes. The main goal of active learning is to choose the instances or data 
points that are important or have influence to our model to be labeled and in-
cluded in the training set. We compare this method to passive learning with 
SVMs where the next instances to be included to the training set are randomly 
selected. The preliminary results show that active learning can achieve high 
performance and significantly reduce the size of training set. 

Keywords: Active learning, support vector machines, tornado prediction, ma-
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1   Introduction 

Most conventional learning methods use static data in the training set to construct a 
model or classifier. The ability of learning methods to update the model dynamically, 
using new incoming data, is important. One method that has this ability is active 
learning. The objective of active learning for classification is to choose the instances 
or data points to be labeled and included in the training set. In many machine learning 
tasks, collecting data and/or labeling data to create a training set is costly and time-
consuming. Rather than selecting and labeling data randomly, it is better if we can la-
bel the data that are important or have influence to our model or classifier.  

In tornado prediction, labeling data is considered costly and time consuming since 
we need to verify which storm-scale circulations produce tornadoes in the ground. 
The tornado events can be verified from facts in the ground including photographs, 
videos, damage surveys, and eyewitness reports. Based on tornado verification, we 
then determine and label which circulations produce tornadoes or not. Therefore, ap-
plying active learning for tornado prediction to minimize the need for the instances 
and use the most informative instances in the training set in order to update the classi-
fier would be beneficial.  
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In the literature, the Mesocyclone Detection Algorithm (MDA) attributes [1] de-
rived from Doppler radar velocity data have been used to detect tornado circulations. 
Marzban and Stumpf [1] applied artificial neural networks (ANNs) to classify MDA 
detections as tornadic or non-tornadic circulations. Additionally, Lakshmanan et al. 
[2] used ANNs and added the near-storm environment (NSE) data into the original 
MDA data set and determined that the skill improved marginally. Application of sup-
port vector machines (SVMs) using the same data set used by Marzban and Stumpf 
[1] has been investigated by Trafalis et al. [3]. Trafalis et al. [3] compared SVMs with 
other classification methods, such as ANNs and radial basis function networks, con-
cluding that SVMs provided better performance in tornado detection. Moreover, a 
study by Adrianto et al. [4] revealed that the addition of NSE data into the MDA data 
can improve performance of the classifiers significantly. However, those experiments 
in the literature were conducted using static data.  

In this paper, we investigated the application of active learning with SVMs for tor-
nado prediction using the MDA and NSE data.  We also compared this method to pas-
sive learning with SVMs using these data where the next instances to be added to the 
training set are randomly selected. 

2   Data and Analysis 

The original data set was comprised of 23 attributes taken from the MDA algorithm 
[1]. These attributes measure radar-derived velocity parameters that describe various 
aspects of the mesocyclone. Subsequently, 59 attributes from the NSE data [2] were 
incorporated to this data set. The NSE data described the pre-storm environment of 
the atmosphere on a broader scale than the MDA data, as the MDA attributes are ra-
dar-based. Information on wind speed, direction, wind shear, humidity lapse rate and 
the predisposition of the atmosphere to accelerate air rapidly upward over specific 
heights were measured by the NSE data.  Therefore, the MDA+NSE data consist of 
82 attributes. 

3   Methodology 

3.1   Support Vector Machines 

The SVM algorithm was developed by Vapnik and has proliferated into a powerful 
method in machine learning [5-7]. This algorithm has been used in real-world applica-
tions and is well known for its superior practical results.  In binary classification prob-
lems, the SVM algorithm constructs a hyperplane that separates a set of training vec-
tors into two classes (Fig. 1). The objective of SVMs (the primal problem) is to 
maximize the margin of separation and to minimize the misclassification error. The 
SVM formulation can be written as follows [8]: 
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where w is the weight vector perpendicular to the separating hyperplane, b is the bias 
of the separating hyperplane, ξi is a slack variable, and C is a user-specified parameter 
which represents a trade off between generalization and misclassification. Using La-
grange multipliers α, the SVM dual formulation becomes [8]: 
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The optimal solution of Eq. (1) is given by w = iii
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optimal solution of the optimization problem in Eq. (2).  The decision function is de-
fined as:  
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Fig. 1. Illustration of support vector machines 

For solving nonlinear problems, the SVM algorithm maps the input vector x into a 
higher-dimensional feature space through some nonlinear mapping Φ and constructs 
an optimal separating hyperplane [7].  Suppose we map the vector x into a vector in 
the feature space (Φ1(x),…,Φn(x),…), then an inner product in feature space has an 
equivalent representation defined through a kernel function K as K(x1,x2) = 
<Φ(x1).Φ(x2)> [8]. Therefore, we can introduce the inner-product kernel as K(xi,xj) = 
<Φ(xi).Φ(xj)> and substitute the dot-product <xi . xj> in the dual problem in Eq. (2) 
with this kernel function. The kernel function used in this study is the radial basis 

function (RBF) with K(xi,xj) = ⎟
⎠
⎞⎜

⎝
⎛ −−

2
exp ji xxγ  where γ is the parameter that con-

trols the width of RBF. 
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Fig. 2. Active learning with SVMs scheme 

3.2   Active Learning with SVMs 

Several active learning algorithms with SVMs have been proposed by Campbell et al. 
[9], Schohn and Cohn [10], and Tong and Koller [11]. Campbell et al. [9] suggested 
that the generalization performance of a learning machine can be improved signifi-
cantly with active learning. Using SVMs, the basic idea of the active learning algo-
rithms is to choose the unlabeled instance for the next query closest to the separating 
hyperplane in the feature space which is the instance with the smallest margin [9-11].  
In this paper, we choose the instances that are inside the margin of separation to be 
labeled and included in the training set. Since the separating hyperplane lies in the 
middle of the margin of separation, these instances will have an effect on the solution. 
Thus, the instances outside the margin of separation will be removed. 

Suppose we are given an unlabeled pool U and a set of labeled data L. The first 
step is to find a query function f(L) where, given a set of labeled data L, determine 
which instances in U to query next. This idea is called the pool-based active learning. 
Scheme of active learning can be found in Fig. 2. 

3.3   Measuring the Quality of the Forecasts for Tornado Prediction 

In order to measure the performance of a tornado prediction classifier, it is important 
to compute scalar forecast evaluation scores such as the Critical Success Index (CSI), 
Probability of Detection (POD), False Alarm Ratio (FAR), Bias, and Heidke Skill 
Score (HSS), based on a “confusion” matrix or contingency table (Table I).  Those 
skill scores are defined as: CSI = a/(a+b+c), POD = a/(a+c), FAR = b/(a+b), Bias = 
(a+b)/(a+c), and HSS = 2(ad-bc)/[(a+c)(c+d)+(a+b)(b+d)]. 

It is important not to rely solely on a forecast evaluation statistic incorporating cell 
d from the confusion matrix, as tornadoes are rare events with many correct nulls. 
This is important as there is little usefulness in forecasting “no” tornadoes every day. 
Indeed, the claim of skill associated with such forecasts including correct nulls for 
rare events has a notorious history in meteorology [13].The CSI measures the  
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accuracy of a solution equal to the total number of correct event forecasts (hits) di-
vided by the total number of tornado forecasts plus the number of misses (hits + false 
alarms + misses) [12]. It has a range of 0 to 1, where 1 is a perfect value.  The POD 
calculates the fraction of observed events that are correctly forecast.  It has a perfect 
score of 1 and a range is 0 to 1 [14].  The FAR measures the ratio of false alarms to 
the number of “yes” forecasts.  It has a perfect score of 0 with its range of 0 to 1 [14]. 
The Bias computes the total number of event forecasts (hits + false alarms) divided by 
the total number of observed events. It shows whether the forecast system is under-
forecast (Bias < 1) or overforecast (Bias > 1) events with a range of 0 to +∞ and per-
fect score of 1 [14].  The HSS [15] is commonly used in forecasting since it considers 
all elements in the confusion matrix.  It measures the relative increase in forecast ac-
curacy over some reference forecast.  In the present formulation, the reference fore-
cast is a random guess.  A skill value > 0 is more accurate than the reference.  It has a 
perfect score of 1 and a range of -1 to 1.   

Table 1. Confusion matrix 

             Observation
Yes No

Yes hit false alarm
Forecast a b

No miss correct null
c d  

4   Experiments 

The data were divided into two sets: training and testing. In the training set, we had 
382 tornadic instances and 1128 non-tornadic instances. In order to perform online 
setting experiments, the training instances were arranged in time order. The testing set 
consisted of 387 tornadic instances and 11872 non-tornadic instances. For both active 
and passive learning experiments, the initial training set was the first 10 instances 
consisted of 5 tornadic instances and 5 non-tornadic instances. At each iteration, new 
data were injected in a batch of several instances. Two different batch sizes, 75 and 
150 instances, were used for comparison. In passive learning with SVMs, all incom-
ing data were labeled and included in the training set. Conversely, active learning 
with SVMs only chooses the instances from each batch which are most informative 
for the classifier. Therefore, the classifier was updated dynamically at each iteration. 
The performance of the classifier can be measured by computing the scalar skill 
scores (Section 3.3) on the testing set. The radial basis function kernel with γ = 0.01 
and C = 10 was used in these experiments. The experiments were performed in the 
Matlab environment using LIBSVM toolbox [16].  

Before training a classifier, the data set needs to be normalized. We normalized the 
training set so that each attribute has the mean of 0 and the standard deviation of 1. 
Then, we used the mean and standard deviation from each attribute in the training set 
to normalize each attribute in the testing set.  



 Active Learning with Support Vector Machines for Tornado Prediction 1135 

 

Fig. 3. (a) The results of CSI, POD, FAR, Bias, and HSS on the testing set using active and 
passive learning at all iterations. (b) The last iteration results with 95% confidence intervals on 
the testing set. 
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5   Results 

It can bee seen from Fig. 3a for all skill scores, CSI, POD, FAR, Bias, and HSS, ac-
tive learning achieved relatively the same scores as passive learning using less train-
ing instances. From the FAR diagram (Fig. 3a), we noticed that at early iteration the 
active and passive learning FAR with the batch size of 75 dropped suddenly. It hap-
pened because the forecast system was underforecast (Bias < 1) at that stage. Ulti-
mately, every method produced overforecasting.  Furthermore, Fig. 3b showed the 
last iteration results with 95% confidence intervals after conducting bootstrap resam-
pling with 1000 replications [17]. The 95% confidence intervals between active and 
passive learning results with the batch sizes of 75 and 150 overlapped each other for 
each skill score, so the differences were not statistically significant. These results in-
dicated that active learning possessed similar performance compared to passive learn-
ing using the MDA and NSE data set.  

The results in Fig. 4 showed that active learning significantly reduced the training 
set size to attain relatively the same skill scores as passive learning. Using the batch 
size of 75 instances, only 571 labeled instances were required in active learning 
whereas in passive learning 1510 labeled instances were needed (Fig. 4a). This ex-
periment reveals that about 62.6% reduction was realized by active learning. Using 
the batch size of 150 instances, active learning can reduce the training set size by 
60.5% since it only needed 596 labeled instances whereas passive learning required 
1510 labeled instances (Fig. 4b). 

 

 

Fig. 4. Diagrams of training set size vs. iteration for the batch sizes of (a) 75 and (b) 150  
instances 

6   Conclusions 

In this paper, active learning with SVMs was used to discriminate between mesocyc-
lones that do not become tornadic from those that do form tornadoes.  The prelimi-
nary results showed that active learning can significantly reduce the size of training 
set and achieve relatively similar skill scores compared to passive learning. Since la-
beling new data is considered costly and time consuming in tornado prediction, active 
learning would be beneficial in order to update the classifier dynamically.   
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