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Abstract. Wireless sensor networks can be viewed as the integration of
three subsystems: a low-impact in situ data acquisition and collection
system, a system for inference of process models from observed data and
a priori information, and a system that controls the observation and
collection. Each of these systems is connected by feedforward and feed-
back signals from the others; moreover, each subsystem is formed from
behavioral components that are distributed among the sensors and out-
of-network computational resources. Crucially, the overall performance
of the system is constrained by the costs of energy, time, and computa-
tional complexity. We are addressing these design issues in the context of
monitoring forest environments with the objective of inferring ecosystem
process models. We describe here our framework of treating data and
models jointly, and its application to soil moisture processes.
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1 Introduction

All empirical science is based on measurements. We become familiar with these
quantitative observations from an early age, and one indication of our comfort
level with them is the catchphrase “ground truth”. Yet one characteristic of the
leading edge of discovery is the poor or unknown quality of measurements, since
the instrumentation technology and the science progress simultaneously, taking
turns pulling each other forward in incremental steps.

Wireless sensor networking is a new instrument technology for monitoring
of a vast range of environmental and ecological variables, and is a particularly
appropriate example of the interleaving of experiment and theory. There are
major ecological research questions that must be treated across diverse scales
of space and time, including the understanding of biodiversity and the effects
on it of human activity, the dynamics of invasive species (Tilman 2003), and
identification of the web of feedbacks between ecosystems and global climate
change. Wireless sensor networks have great potential to provide the data to
help answer these questions, but they are a new type of instrumentation with
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substantial constraints: the usual problems of transducer noise, nonlinearities,
calibration, and sensitivity to temperature and aging are compounded by nu-
merous potential sensor and network failure modes and intrinsically unreliable
multihop data transmissions.

Moreover, the entire measurement and networking enterprise is severely con-
strained by limited power and energy. There is substantial redundancy in data
collected within wireless networks (Fig. 1). Yet the capacity to collect dense
data when it provides valuable information is one of the key motivations for
the technology. Clearly, there is need to control the measurement process with
model-based evaluation of potential observations.

Fig. 1. Examples of four variables measured in the Duke Forest wireless sensor network
showing different levels of redundancy at different scales

Measurements without underlying data and process models are of limited use
in this endeavor. Indeed, most useful measurements, even when noiseless and
unbiased, are still based on an underlying model, as in processing for sensors
and satellite imagery (Clark et al. 2007). These often-implicit or even forgotten
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models have limitations that are bound up in their associated data. For exam-
ple, a fundamental operation in environmental monitoring is sampling in space
and time, and one approach is to estimate temporal and spatial bandwidths
to establish sampling rates. However, the usual frame of reference in this case
is the classic Shannon sampling theorem, and the requirement of finite band-
width in turn forces definition of the signal over all time, a clear model-based
limitation.

The phenomena of interest in environmental monitoring are highly time-
varying and non-stationary, and laced with measurement and model uncertainty.
These factors are the key motivation for the application of the dynamic distrib-
uted data application systems (DDDAS) paradigm to wireless sensor networks
(Flikkema et al. 2006). DDDA systems are characterized by the coupling of the
concurrent processes of data collection and model inference, with feedbacks from
one used to refine the other. The fact that resources—energetic and economic—
are limited in wireless sensor networks is in some sense an opportunity. Rather
than accept measurements as the gold standard, we should embrace the fact that
both measurements and models can be rife with uncertainty, and then tackle the
challenge of tracking and managing that uncertainty through all phases of the
project: transducer and network design; data acquisition, transfer, and storage;
model inference; and analysis and interpretation.

2 Dynamic Control of Network Activity

Looking at two extreme cases of data models—strong spatial correlation com-
bined with weak local correlation and vice versa—can shed some light on the
trade-offs in designing algorithms that steer network activity. First, consider the
case when the monitored process is temporally white but spatially coherent. This
could be due to an abrupt global (network-wide) change, such as the onset of
a rainstorm in the monitoring of soil moisture. In this case, we need snapshots
at the natural temporal sampling rate, but only from a few sensor nodes. Data
of the needed fidelity can then be obtained using decentralized protocols, such
as randomized protocols that are simple and robust (Flikkema 2006). Here, the
fusion center or central server broadcasts a cue to the nodes in terms of activity
probabilities. The polar opposite is when there is strong temporal coherence but
the measurements are statistically independent in the spatial domain. One ex-
ample of this is sunfleck processes in a forest stand with varying canopy density.
Since most sensor nodes should report their measurements, but infrequently,
localized temporal coding schemes can work well.

Our overall effort goes beyond data models to the steering of network activity
driven by ecosystem process models, motivated by the fact that even though a
measured process may have intrinsically strong dynamics (or high bandwidth),
it may be driving an ecosystem process that is a low-pass filter, so that the
original data stream is strongly redundant with respect to the model of interest.
Our approach is to move toward higher-level modeling that reveals what data is
important.
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A common criticism might arise here: what if the model is wrong? First, given
the imprecision and unreliability of data, there is no a priori reason to favor data.
For example, we often reject outliers in data preprocessing, which relies on an
implicit ”reasonableness” model. Yet an outlier could be vital information. Thus
any scheme must dynamically allocate confidence between the model and the
incoming data. By using a Bayesian approach, this allocation can be made in a
principled, quantitative manner (Clark 2005, Clark 2007, MacKay 2003).

Any algorithm that uses model-steered sampling and reporting (rather than
resorting to fixed-rate sampling at the some maximum rate) will make errors
with a non-zero probability. To mitigate these errors, our strategy is based con-
current execution of the same models in the fusion center as in individual sensors.
Using this knowledge, the fusion center can estimate unreported measurements;
the reliability of these estimates is determined by the allowed departure of the
predicted value from the true value known by the sensing node. The fusion
center can also run more sophisticated simulation-based models that would be
infeasible in the resource-constrained sensors, and use the results to broadcast
model-parameter updates.

Clearly, a missing report could be due to a communication or processing error
rather than a decision by the sensor. By carefully controlling redundancy within
the Bayesian inference framework, which incorporates models for both dynamic
reporting and failure statistics (Silberstein et al. 2007), it become possible to
infer not only data and process models, but node- and network-level failure
modes as well. Finally, in our experiments, each sensor node archives its locally
acquired data in non-volatile memory, allowing collection of reference data sets
for analysis.

3 Example: Soil Moisture Processes

Soil moisture is a critical ecosystem variable since it places a limit on the rate
of photosynthesis and hence plant growth. It is a process parameterized by soil
type and local topography and driven by precipitation, surface runoff, evapotran-
spiration, and subsurface drainage processes. Because it is highly non-linear, it
is much more accessible to Bayesian approaches than ad hoc inverse-modeling
techniques. Bayesian techniques permit integration of process noise that charac-
terizes our level of confidence in the model. In practice, it may more productive
to use a simple model with fewer state variables and process noise instead of a
model of higher dimension with poorly known sensitivity to parameter variations.

Once the model is obtained (for example, using training data either from
archival data or a “shake-out” interval in the field), the inferred parameters can
then be distributed to the sensor nodes. The nodes then use the model as a pre-
dictor for new measurements based on the past. The observation is transmitted
only when the discrepancy between the measurement and the predicted value
exceeds a threshold (again known to both the sensor and the fusion center).
Finally, the model(s) at the fusion center are used to recover the unreported
changes.
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Fig. 2. a) Simulated soil moisture data (solid line) and simulated observations (colored
lines) from sensors that drift. b) Posterior estimates of parameter drift become part of
the model that is used to determine which observations to collect (Fig. 3).

In the simulation results shown in Figure 2 (Clark et al. 2007), the underlying
soil moisture is shown as a solid black line. Here we use a purely temporal model
in each sensor node. Five sensors are shown in different colors, with calibration
data as red dots. To emphasize that the approach does not depend on a flawless
network, we assume that all sensors are down for a period of time. The 95%
predictive intervals for soil moisture (dashed lines) show that, despite sensor drift
and even complete network failure, soil moisture can be accurately predicted. For
this particular example, the estimates of drift parameters are somewhat biased
(Figure 2b), but these parameters are of limited interest, and have limited impact
on predictive capacity (Figure 2a). The impact on reporting rate and associated
energy usage is substantial as well (Clark et al. 2007).

Our strategy is to incorporate dynamic reporting starting with simple, local
models in an existing wireless sensor network architecture (Yang 2005). As shown
by the soil moisture example, even purely temporal models can have a signifi-
cant impact. From a research standpoint, it will be useful to first determine the
effectiveness of dynamic reporting driven by a local change-based model where a
node reports an observation only if it has changed from the previously reported
observation by a specified absolute amount. This is simple to implement and
requires a negligible increase in processing time and energy. In general, local
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Fig. 3. A simple process model, with field capacity and wilting point, together with
a data model that accommodated parameter drift (Fig. 2b) allows for transmission
of only a fraction of the data (solid dots in (a)). Far more of the measurements are
suppressed (b), because they can be predicted.

models have the advantage of not relying on collaboration with other sensor
nodes and its associated energy cost of communication.

What about the problem of applying one model for data collection and another
for modeling those data in the future? It is important to select models for data
collection that emphasize data predictability, rather than specific parameters to
be estimated. For example, wilting point and field capacity are factors that make
soil moisture highly predictable, their effects being evident in Figures 1 and 2.
By combining a process model that includes just a few parameters that describe
the effect of field capacity and wilting point and a data model that includes
sensor error, the full time series can be reconstructed based on a relatively small
number of observations (Figure 3)(Clark et al. 2007).

4 Looking Ahead

Researchers tend to make an observation, find the most likely value, and then
treat it as deterministic in all subsequent work, with uncertainty captured only
in process modeling. We have tried to make the case here for a more holis-
tic approach that captures uncertainty in both data and models, and uses a
framework to monitor and manage that uncertainty. As wireless sensor network
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deployments become larger and more numerous, researchers in ecology and the
environmental sciences will become inundated with massive, unwieldy datasets
filled with numerous flaws and artifacts. Our belief is that much of this data may
be redundant, and that many of the blemishes may be irrelevant from the per-
spective of inferring predictive models of complex, multidimensional ecosystems
processes. Since the datasets will consume a great deal of time and effort to docu-
ment, characterize, and manage, we think that that the time for model-mediated
sensing has arrived.
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