
Grid-Enabled Software Environment for
Enhanced Dynamic Data-Driven Visualization

and Navigation During Image-Guided
Neurosurgery�

Nikos Chrisochoides1, Andriy Fedorov1, Andriy Kot1, Neculai Archip2,
Daniel Goldberg-Zimring2, Dan Kacher2, Stephen Whalen2, Ron Kikinis2,

Ferenc Jolesz2, Olivier Clatz3, Simon K. Warfield3,
Peter M. Black4, and Alexandra Golby4

1 College of William & Mary, Williamsburg, VA, USA
2 Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA

3 Department of Radiology, Children’s Hospital, Boston, MA, USA
4 Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA

Abstract. In this paper we present our experience with an Image
Guided Neurosurgery Grid-enabled Software Environment (IGNS-GSE)
which integrates real-time acquisition of intraoperative Magnetic Reso-
nance Imaging (IMRI) with the preoperative MRI, fMRI, and DT-MRI
data. We describe our distributed implementation of a non-rigid image
registration method which can be executed over the Grid. Previously,
non-rigid registration algorithms which use landmark tracking across the
entire brain volume were considered not practical because of the high
computational demands. The IGNS-GSE, for the first time ever in clin-
ical practice, alleviated this restriction. We show that we can compute
and present enhanced MR images to neurosurgeons during the tumor
resection within minutes after IMRI acquisition. For the last 12 months
this software system is used routinely (on average once a month) for clin-
ical studies at Brigham and Women’s Hospital in Boston, MA. Based on
the analysis of the registration results, we also present future directions
which will take advantage of the vast resources of the Grid to improve
the accuracy of the method in places of the brain where precision is crit-
ical for the neurosurgeons.

Keywords: Grid, Data-Driven Visualization.

1 Introduction

Cancer is one of the top causes of death in the USA and around the world.
Medical imaging, and Magnetic Resonance Imaging (MRI) in particular, pro-
vide great help in diagnosing the disease. In brain cancer cases, MRI provides
� This research was supported in part by NSF NGS-0203974, NSF ACI-0312980, NSF

ITR-0426558, NSF EIA-9972853.

Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 980–987, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Grid-Enabled Software Environment 981

extensive information which can help to locate the tumor and plan the resec-
tion strategy. However, deformation and shift of brain structures is unavoidable
during open brain surgery. This creates discrepancies as compared to the pre-
operative imaging during the operation.

It is possible to detect the brain shift during the surgery. One of the means to
do this is IMRI. IMRI provides sparse dynamic measurements, which can be used
to align (register) the preoperative data accordingly. In this way, high-quality,
multimodal preoperative imaging can be used during the surgery.

However, registration is a computationally-intensive task, and it cannot be
initiated before IMRI becomes available. Local computing resource available at
a particular hospital may not allow to perform this computation in time. The
goal of our research is to use geographically distributed computing resources
to expedite the completion of this computation. In the on-going collaboration
between Brigham and Women’s Hospital (BWH) in Boston, MA, and College
of William and Mary (CWM) in Williamsburg, VA, we are studying how widely
available commodity clusters and Grid resources can facilitate the timely delivery
of registration results. We leverage our work from the state-of-the art registration
method [1], and extensive experience with distributed processing and dynamic
load balancing [2,3].

We have designed a robust distributed implementation of the registration
method, which meets the following requirements concerning (1) execution speed,
(2) reliability, (3) ease-of-use and (4) portability of the registration code. We eval-
uate this prototype implementation in a geographically-distributed environment,
and outline how IGNS computations can benefit from large-scale computing re-
sources like TeraGrid .

2 Near-Real-Time Non-rigid Registration

2.1 Registration Algorithm

The registration method was first presented in [1], and subsequently evaluated
in [4]. The computation consists of preoperative and intraoperative components.
Intraoperative processing starts with the acquisition of the first intraoperative
scan. However, the time-critical part of the intraoperative computation is initi-
ated when a scan showing shift of the brain is available. The high-level timeline
of this process is shown in Fig. 1.

Here we briefly describe the three main steps of the algorithm:

1. the patient-specific tetrahedral mesh model is generated from the segmented
intra-cranial cavity (ICC). The ICC segmentation [4] is prepared based on
pre-operative imaging data. As the first intraoperative scan is available, pre-
operative data is rigidly (i.e., using translation and rotation) aligned with
the patient’s head position;

2. with the acquisition of the intraoperative image showing brain deforma-
tion, sparse displacement field is estimated from the intra-operative scan
using blockmatching [1]. Its computation is based on the minimization of



982 N. Chrisochoides et al.

the correlation coefficient between regions, or blocks, of the pre-operative
(aka floating) image and the real-time intra-operative (aka fixed) image;

3. the FEM model of the intra-cranial cavity with linear elastic constitutive
equation is initialized with the mesh and sparse displacement field as the
initial condition. An iterative hybrid method is used to discard the outlier
matches.

Steps 2 and 3 are time critical and should be performed as the surgeons are
waiting. In the context of the application we define the response time as the
time between the acquisition of the intra-operative scan of the deformed tissue
and the final visualization of the registered preoperative data on the console in
the operating room. These steps performed intraoperatively form the Dynamic
Data-Driven Application System (DDDAS 1) steered by the IMRI-acquired data.
Our broad objective is to minimize the perceived (end-to-end) response time of
the DDDAS component.

2.2 Implementation Objectives

We have completed an evaluation of the initial PVM implementation [1] of the de-
scribed registration approach. The evaluation was done on retrospective datasets
obtained during past image-guided neurosurgeries. We identified the following
problems:

1. The execution time of the original non-rigid registration code is
data-dependent and varies between 30 and 50 minutes, when computed on
a high-end 4 CPU workstation. The scalability of the code is very poor due
to work-load imbalances.

2. The code is designed as a single monolithic step (since it was not evaluated
in the intraoperative mode) to run and a single failure at any point requires
to restart the registration from the beginning.

3. The original code is not intuitive to use, a number of implementation-specific
parameters are required to be set in the command line. This makes it cum-
bersome and error-prone to use during neurosurgery. The possible critical
delays are exacerbated in the case the code has to run remotely on larger
Clusters of Workstations (CoWs).

4. The original code is implemented in PVM which is not supported by many
sites due to widespread use of MPI standard for message passing.

Based on the evaluation of the original code, the following implementation
objectives were identified:

High-performance. Develop an efficient and portable software environment
for parallel and distributed implementation of real-time non-rigid registra-
tion method for both small scale parallel machines and large scale geographi-
cally distributed CoWs. The implementation should be able to work on both
dedicated, and time-shared resources.

1 The notion of DDDAS was first coined and advocated by Dr.Darema,
see http://dddas.org.

http://dddas.org


Grid-Enabled Software Environment 983

Fig. 1. Timeline of the image processing steps during IGNS (the client is running at
BWH, and the server is using multiple clusters at CWM, for fault-tolerance purposes)

Quality-of-service (QoS). Provide functionality not only to sustain failure
but also to dynamically replace/reallocate faulty resources with new ones
during the real-time data acquisition and computation.

Ease-of-use. Develop a GUI which automatically will handle exceptions (e.g.,
faults, resource management, and network outages).

We have developed an implementation which addresses the aforementioned
objectives [5]. Next we briefly highlight some of the implementation details.

2.3 Implementation Details

Multi-level Distributed Block Matching. In order to find a match for a given
block, we need the block center coordinates, and the areas of the fixed and float-
ing images bounded by the block matching window [1]. The fixed and floating
images are loaded on each of the processors during the initialization step, as
shown in Fig. 1. The total workload is maintained in a work-pool data structure.



984 N. Chrisochoides et al.

Each item of the work-pool contains the three coordinates of the block center
(total number of blocks for a typical dataset is around 100,000), and the best
match found for that block (in case the block was processed; otherwise that field
is empty). We use the master-worker computational model to distribute the work
among the processors.

However, because of the scarce resource availability we have to be able to deal
with computational clusters which belong to different administrative domains.
In order to handle this scenario, we use hierarchical multi-level organization
of the computation with master-worker model. We use a separate master node
within each cluster. Each master maintains a replica of the global work-pool, and
is responsible for distributing the work according to the requests of the nodes
within the assigned cluster, and communicating the execution progress to the
other master(s).

Multi-level Dynamic Load Balancing. The imbalance of the processing time
across different nodes involved in the computation is caused by our inability
or difficulty to predict the time required per block of data on a given archi-
tecture. The main sources of load imbalance are platform-dependent . These are
caused by the heterogeneous nature of the PEs we use. More importantly, some
of the resources may be time-shared by multiple users and applications, which
affect the processing time in an unpredictable manner. The (weighted-) static
work assignment of any kind is not effective when some of the resources operate
in the time-shared mode.

We have implemented a multi-level hierarchical dynamic load balancing
scheme for parallel block matching. We use initial rough estimation of the com-
bined computational power of each cluster involved in the computation (based
on CPU clock speed) for the weighted partitioning of the work-pool and initial
assignment of work. However, this is a rough “guess” estimation, which is ad-
justed at runtime using a combination of master/worker and work-stealing [6,7]
methods. Each master has a copy of the global work-pool, which are identical
in the beginning of the computation. The portion of the work-pool assigned to
a specific cluster is partitioned in meta-blocks (a sequence of blocks), which are
passed to the cluster nodes using the master-worker model. As soon as all the
matches for a meta-block are computed, they are communicated back to the
master, and a new meta-block is requested. In case the portion of the work-pool
assigned to a master is processed, the master continues with the “remote” por-
tions of work (i.e., those, initially assigned to other clusters). As soon as the
processing of a “remote” meta-block is complete, it is communicated to all the
other master nodes to prevent duplicated computation.

Multi-level Fault Tolerance. Our implementation is completely decoupled, which
provides the first level of fault tolerance, i.e., if the failure takes place at any of
the stages, we can seamlessly restart just the failed phase of the algorithm and
recover the computation. The second level of fault tolerance concerns with the
parallel block matching phase. It is well-known that the vulnerability of parallel
computations to hardware failures increases as we scale the size of the system.



Grid-Enabled Software Environment 985

We would like to have a robust system which in case of failure would be able
to continue the parallel block matching without recomputing results obtained
before the failure. This functionality is greatly facilitated by maintaining the
previously described work-pool data-structure which is maintained on by the
master nodes.

The work-pool data-structure is replicated on the separate file-systems of
these clusters, and has a tuple for each of the block centers. A tuple can be
either empty, if the corresponding block has not been processed, or otherwise it
contains the three components of the best match for a given block. The work-pool
is synchronized periodically between the two clusters, and within each cluster it
is updated by the PEs involved. As long as one of the clusters involved in the
computation remains operational, we will be able to sustain the failure of the
other computational side and deliver the registration result.

Ease-of-Use. The implementation consists of the client and server components.
The client is running at the hospital site, and is based on a Web-service, which
makes it highly portable and easy to deploy. On the server side, the input data
and arguments are transferred to the participating sites. Currently, we have
a single server responsible for this task. The computation proceeds using the
participating available remote sites to provide the necessary performance and
fault-tolerance.

Table 1. Execution time (sec) of the intra-surgery part of the implemented web-service
at various stages of development

Setup ID
1 2 3 4 5 6 7

High-end workstation, using original 1558 1850 2090 2882 2317 2302 3130
PVM implementation
SciClone (240 procs), 745 639 595 617 570 550.4 1153
no load-balancing
SciClone (240 procs) and
CS lab(29 procs), dynamic 2-level 30 40 42 37 34 33 35
load-balancing and fault-tolerance

3 Initial Evaluation Results

Our preliminary results use seven image datasets acquired at BWH. The com-
putations for two of these seven registration computations were accomplished
during the course of surgery (at the College of William and Mary), while the
rest of the computations were done retrospectively. All of the intra-operative
computations utilized SciClone (a heterogeneous cluster of workstations located
at CWM, reserved in advance for the registration computation) and the work-
stations of the student lab (time-shared mode). The details of the hardware
configuration can be found in [5]. Data transfer between the networks of CWM



986 N. Chrisochoides et al.

1 2 3 4 5 6 7 8 9 10 11
landmark ID

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

er
ro

r,
 m

m

Fig. 2. Registration accuracy dependence on proper parameter selection (left). Excel-
lent scalability of the code on the NCSA site of TeraGrid (right) enables intraoperative
search for optimal parameters.

and BWH (subnet of Harvard University) are facilitated by the Internet2 back-
bone network with the slowest link having bandwidth of 2.5 Gbps.

The initial evaluation results are summarized in Table 1. We were able to
reduce the total response time to 2 minutes (4 minutes, including the time to
transfer the data). We showed, that dynamic load balancing is highly effective
in time-shared environment. Modular structure of the implemented code greatly
assisted in the overall usability and reliability of the code. The fault-tolerance
mechanisms implemented are absolutely essential and introduce a mere 5-10%
increase in the execution time. We have also evaluated our implementation on
the Mercury nodes of the NCSA TeraGrid site [8]. The 64-bit homogeneous
platform available at NCSA allows for high sustained computational power and
improved scalability of the code (see Fig. 2).

4 Discussion

The registration algorithm we implemented has a number of parameters whose
values can potentially affect the accuracy of the results. The evaluation of all
parameters is computationally demanding (the parameter space of the algorithm
has high dimensionality), which requires vast computational resources that are
available only over the Grid. Based on the preliminary analysis, registration
accuracy is dependent on the parameter selection. Fig. 2 shows the spread of
registration precision at expert-identified anatomical landmarks. Given the dis-
tributed resources available within TeraGrid , we should be able to compute in
parallel registration results which use different parameter settings. As the mul-
tiple registrations become available, the surgeon will specify the area of interest
within the brain, and the registration image which gives the best effective accu-
racy in that particular region will be selected.

The implemented framework proved to be very effective during on-going clini-
cal study on nonrigid registration. However, more work needs to be done to make
the framework portable and easy to deploy on an arbitrary platform. Once this



Grid-Enabled Software Environment 987

is complete, the registration can be provided as a ubiquitously-available Web
service. The concerns about resource allocation and scheduling on a shared re-
source like TeraGrid are of high importance. The presented research utilized
time-shared resources together with a large cluster operating in dedicated mode.
However, we are currently investigating other opportunities, e.g., SPRUCE and
urgent computing [9] on TeraGrid .

Acknowledgments. This work was performed in part using computational
facilities at the College of William and Mary which were enabled by grants
from Sun Microsystems, the National Science Foundation, and Virginia’s Com-
monwealth Technology Research Fund. We thank SciClone administrator Tom
Crockett for his continuous support and personal attention to this project. We ac-
knowledge support from a research grant from CIMIT, grant RG 3478A2/2 from
the NMSS, and by NIH grants R21 MH067054, R01 RR021885, P41 RR013218,
U41 RR019703, R03 EB006515 and P01 CA067165.

References

1. Clatz, O., Delingette, O., Talos, I.F., Golby, A., Kikinis, R., Jolesz, F., Ayache,
N., Warfield, S.K.: Robust non-rigid registration to capture brain shift from intra-
operative MRI. IEEE Trans. Med. Imag. 24(11) (2005) 1417–1427

2. Barker, K., Chernikov, A., Chrisochoides, N., Pingali, K.: A load balancing frame-
work for adaptive and asynchronous applications. IEEE TPDS 15(2) (February
2004) 183–192

3. Fedorov, A., Chrisochoides, N.: Location management in object-based distributed
computing. In: Proc. of IEEE Cluster’04. (2004) 299–308

4. Archip, N., Clatz, O., Whalen, S., Kacher, D., Fedorov, A., Kot, A., Chrisochoides,
N., Jolesz, F., Golby, A., Black, P.M., Warfield, S.K.: Non-rigid alignment of preop-
erative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualiza-
tion and navigation in image-guided neurosurgery. NeuroImage (2007) (in press).

5. Chrisochoides, N., Fedorov, A., Kot, A., Archip, N., Black, P., Clatz, O., Golby,
A., Kikinis, R., Warfield, S.K.: Toward real-time image guided neurosurgery using
distributed and Grid computing. In: Proc. of IEEE/ACM SC06. (2006)

6. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk:
An efficient multithreaded runtime system. In: Proceedings of the 5th Symposium
on Principles and Practice of Parallel Programming. (1995) 55–69

7. Wu, I.: Multilist Scheduling: A New Parallel Programming Model. PhD thesis,
School of Comp. Sci., Carnegie Mellon University, Pittsburg, PA 15213 (July 1993)

8. TeraGrid Project: TeraGrid Home page (2006) http://teragrid.org/, accessed 23
April 2006.

9. Beckman, P., Nadella, S., Trebon, N., Beschastnikh, I.: SPRUCE: A system for
supporting urgent high-performance computing. In: Proc. of WoCo9: Grid-based
Problem Solving Environments. (2006)

http://teragrid.org/

	Introduction
	Near-Real-Time Non-rigid Registration
	Registration Algorithm
	Implementation Objectives
	Implementation Details

	Initial Evaluation Results
	Discussion

