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Outline

What is BMI
DDDBMI architecture vs. classical BMI
• Switching among inverse-forward model pairs

Movemes as motion primitives/models
Distributed experimental setup
Computational support
• Algorithm structure
• Reservation and QoS middleware

Closing remarks
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Brain Machine Interfaces (BMIs)

Signal processing
• Many possible models
• Real-time (20-200 ms)
• Feedback and training

Optimal
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Computer and
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Signal
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oning

Motor BMIs
• Translate brain electrical activity into 

commands to external devices
• Command BMIs or BCIs– EEG-based
• Trajectory control BMIs – based on neuronal 

firings/fields
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Traditional vs. DDDBMI model
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Motor Control 
System ModelMotor Control 

System Model

Model 
Learning

Model 
Learning

Mmm, cheese! 
I want to grab 

that.

Motor Control 
System ModelMotor Control 

System Model

Model 
Learning

Model 
Learning

Desired signal provided by the model, not the patient
Internal error estimates from forward-inverse models 
Switching between pairs as in a “mixture of experts”
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DDDBMI model (inspired by Kawato’s brain model)  
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General considerations

Number of pairs of “internal” models
• 10s – 100s for simple tasks (e.g. press lever)
• 1000s (?) for complex tasks

Types of “internal” models
• Linear (filters): Wiener, NLMS, PVA, …
• Nonlinear (neural nets): TDNN, RMLP, RNN, NMCLM
• State-based: Kalman filters, Bayesian classifiers, 

HMMs

Complexity of models
• O(n), O(n2), O(mn2), O(n3), …
• for n neurons, m models
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Movemes
Shoulder Rotation
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Clustering

[DiGiovanna, Sanchez, Fregly, and Principe, "Arm motion reconstruction via clustering in joint angle space"  IJCNN, 2006]
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Experimental Setup

Data acquisition
computer

In-VIGO Grid
computer system
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Experimental setup distribution

ACIS
lab

Neurology
lab
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Basic computation structure
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Online – real-time (hard and soft deadlines)
Offline – recreation of experiments from data 
in storage
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Preliminary computational estimates

Load weights w(t) from memory

Get input data from Pediatrics lab containing 
neural data u(t) and feedback x(t-k)

P(t) = INV(u, winv) Q(t) = FWD(u, wfwd) R(t) = RESP(u, wrp)

Calculate Prediction Error e(t) = x(t-k) – Q(t)

Calculate the likelihood l(t) from e(t)

Get responsibility G(t) from the responsibility estimator

Motor command Cmd(t) = P(t) x G(t)

Send Cmd(t) back to the Pediatrics Lab

Any new data?

Yes No

Train the models by updating the weights

Complexity O(n) O(n2) O(n3)

Avg. 
iteration 

time 

277
µs 119 ms 115 s

Communication = 8 ~10 ms

Intel Pentium III 1.13GHz 512KB Cache, 1GB 
Memory, Fedora 4

32 channels from electrodes, 3 neurons per 
channel, 10 sliding taps, n = 960
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The In-VIGO approach

Machines Applications Data Networks

Virtual computing grids

Virtual information grids

Services Services Services Services

Virtual 
machines

Virtual
applications

Virtual
data

Virtual 
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Virtual interfaces

SOAP
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UDDIOGSA,
WSRFHTTPXML

Globus/Condor .net JINI

VMware, Xen

Mz800, UML
C#

SQL

Java
NFS

TCP/I
UDP
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P

local control, decentralized management
open  general-purpose standards
non-trivial QoS
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BMI portal

Reservation of resources
• For online experiments

Access to data sets
• For replay and analysis of 

experiments

Specification of models
• For use in either offline or 

online experiments

Access to computational tools
• For analysis, simulation, visualization ….
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Resource management system

Job Management Interface to Distributed Resources

Servers
e.g. DELL PowerEdge

Clusters
e.g. PBS

Grids
e.g. Globus

Virtual Resources:
Filesystems, Machines, 

Clusters, Grids

fork-exec
ps,kill

qsub
qstat,qdel globusrun

fork-exec, qsub
globusrun,..

Create Virtual ResourcessubmitJob( )  getStatusJob( )  killJob( )

Information
Manager

Virtual Application Rules

In-VIGO-state 
specific

Resource
Specification

and 
Selection

mountFileSystem( )  unmountFileSystem( )
findJobRes( )

In-VIGO-session specific Job and Resource Requirements via Globus RSL and Condor Classads

executeJob(InVigoJobRequest) executeParameterSweepJobs(InVigoJobRequestVector)

Job Control Logic

Job 
Specification 
API or Service

Job 
Management 

API or 
ServiceResource 

Specification 
and Selection 
API or Service

Slide provided by S. Adabala
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Requirements for Grid-based DDBMIs

1. resource discovery based on quality of 
service specifications and scheduling 
based on virtual machine reservations, 

2. dynamic steering of applications to 
computing resources based on run-time 
feedback from application inputs. 
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PKI/
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1) Resource request;
QoS specification

2) Resource
selection

3) Virtual
cluster
reservation,
instantiation

MPI
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Closing remarks

Multidisciplinary collaboration
Research goals
• novel BMI system using motor control theory.
• understanding of human brain dynamics.
• definition of movemes in motion to provide structure 

for our model.
• middleware to run closed-loop, real-time BMI 

experiments via grid computing

Preliminary results
• movemes framework for movement specification and 

decomposition
• analysis of spatial neural activity
• characterization of communication/computation delays
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