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Brain Machine Interfaces (BMIs)

Motor BMIs

Translate brain electrical activity into
commands to external devices

Command BMIs or BCls— EEG-based
Trajectory control BMIs — based on neuronal

firings/fields
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Traditional vs. DDDBMI model
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Desired signal provided by the model, not the patient
Internal error estimates from forward-inverse models
Switching between pairs as in a “mixture of experts”
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multiple model pairs

forward (planning):
sensory input from
motor commands

Inverse (execution):

motor commands
from trajectory info

output combines
several models

data dependent
dynamic
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Responsibility

Responsibility

Adapted from
Wolpert, Kawato,
Multiple paired
forward and inverse
models for motor
control, Neural
Networks 11 (1998)
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General considerations

Number of pairs of “internal” models
10s — 100s for simple tasks (e.g. press lever)
1000s (?) for complex tasks

Types of “Internal” models
Linear (filters): Wiener, NLMS, PVA, ...
Nonlinear (neural nets): TDNN, RMLP, RNN, NMCLM

State-based: Kalman filters, Bayesian classifiers,
HMMs

Complexity of models
O(n), O(n?), O(mn?), O(n3), ...
for n neurons, m models
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Movemes

Shoulder Rotation
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[DiGiovanna, Sanchez, Fregly, and Principe, "Arm motion reconstruction via clustering in joint angle space" IJCNN, 2006]
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Experimental Setup
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Experimental setup distribution
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Basic computation structure
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Preliminary computational estimates

?

Load weights w(t) from memory

'

Get input data from Pediatrics lab containing
neural data u(t) and feedback x(t-k)

' | !

P(t) = INV(u, w, Q(t) = FWD(u, Wy, 4) R(t) = RESP(u, w,;)

|nV)
I

Calculate Prediction Error e(t) = x(t-k) — Q(t)

'

Calculate the likelihood I(t) from e(t)

'

Get responsibility G(t) from the responsibility estimator

Motor command Cmd(t) = P(t) x G(t)

v
Send Cmd(t) back to the Pediatrics Lab

Train the models by updating the weights

Yes i No

Any new data?
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Complexity | O(n) | O(n?) O(n?3)
Avg.

iteration 217 119ms | 115s
: S

time

Communication =8 ~10 ms

Intel Pentium 11l 1.13GHz 512KB Cache, 1GB

Memory, Fedora 4

32 channels from electrodes, 3 neurons per
channel, 10 sliding taps, n = 960
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The In-VIGO approach

Virtual information grids

ServicesH ServicesH ServicesH Services

Virtual computing grids
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Virtual Virtual Virtual Virtual
machines applications data networks
Machines Applications Data Networks
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v open general-purpose standards
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BMI portal

Reservation of resources
For online experiments

Access to data sets
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Specification of models
For use Iin either offline or
online experiments
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Access to computational tools

For analysis, simulation, visualization ....
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Resource management system

Job
Management
API or
Service

Resource
Specification
and Selection
API or Service

In-V1GO-session specific Job and Resource Requirements via Globus RSL and Condor Classads
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Clusters
e.g. PBS

Information
Manager

Slide provided by S. Adabala
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Requirements for Grid-based DDBMIs

1.
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resource discovery based on quality of
service specifications and scheduling
based on virtual machine reservations,

dynamic steering of applications to
computing resources based on run-time
feedback from application inputs.

3) Virtual
1) Resource request; cluster
QoS speC|f|cat|on v reservation,

2) Resource
selection

instantiation
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Closing remarks

Multidisciplinary collaboration

Research goals
novel BMI system using motor control theory.
understanding of human brain dynamics.

definition of movemes in motion to provide structure
for our model.

middleware to run closed-loop, real-time BMI
experiments via grid computing
Preliminary results

movemes framework for movement specification and
decomposition

analysis of spatial neural activity
characterization of communication/computation delays

A( jl S Advanced Computing and Information Systems laboratory
T



Acknowledgements

Graduate students
Shalom Darmanjian
Jack DiGiovanna
Prapaporn Rattanatamrong
Ming Zhao

BJ Fregly

collaboration and support with the musculoskeletal
modeling.

Wendy Murray (Stanford University)
for use of the skeletal model.

National Science Foundation

NSF Grant No. CNS-0540304 under the DDDAS
program

A( jl S Advanced Computing and Information Systems laboratory
B




Publications

J. DiGiovanna, J. C. Sanchez, BJ Fregly, and J. C.
Principe, "Arm motion reconstruction via clustering in
joint angle space" presented at IEEE Intl. Joint Conf.
Neural Networks, Vancouver, BC, 2006

J. DiGiovanna, J. C. Sanchez, and J. C. Principe,
"Improved linear BMI systems via population
averaging" submitted to IEEE EMBS conference, New

York, NY, 2006

UNIVERSITY OF

FLORIDA

._fr';.ax
e

A( jl S Advanced Computing and Information Systems laboratory
T



	A New Architecture for Deriving Dynamic Brain-Machine Interfaces
	Outline
	Brain Machine Interfaces (BMIs)
	Traditional vs. DDDBMI model
	DDDBMI model (inspired by Kawato’s brain model)
	General considerations
	Movemes
	Experimental Setup
	Experimental setup distribution
	Basic computation structure
	Preliminary computational estimates
	The In-VIGO approach
	BMI portal
	Resource management system
	Requirements for Grid-based DDBMIs
	Closing remarks
	Acknowledgements
	Publications

