A New Architecture for Deriving Dynamic Brain-Machine Interfaces

José Fortes, Renato Figueiredo, José Principe Dep. of Electrical and Computer Eng.

Linda Hermer-Vazquez Dep. of Psychology

Justin Sanchez Dep. of Pediatrics

Outline

- What is BMI
- DDDBMI architecture vs. classical BMI
 - Switching among inverse-forward model pairs
- Movemes as motion primitives/models
- Distributed experimental setup
- Computational support
 - Algorithm structure
 - Reservation and QoS middleware
- Closing remarks

Brain Machine Interfaces (BMIs)

- Motor BMIs
 - Translate brain electrical activity into commands to external devices
 - Command BMIs or BCIs— EEG-based
 - Trajectory control BMIs based on neuronal firings/fields
- Signal processing
 - Many possible models
 - Real-time (20-200 ms)
 - Feedback and training

Traditional vs. DDDBMI model

- Desired signal provided by the model, not the patient
- Internal error estimates from forward-inverse models
- Switching between pairs as in a "mixture of experts"

DDDBMI model (inspired by Kawato's brain model)

multiple model pairs

 forward (planning): sensory input from motor commands

 inverse (execution): motor commands from trajectory info

output combines several models

- data dependent
- dynamic

General considerations

- Number of pairs of "internal" models
 - 10s 100s for simple tasks (e.g. press lever)
 - 1000s (?) for complex tasks
- Types of "internal" models
 - Linear (filters): Wiener, NLMS, PVA, ...
 - Nonlinear (neural nets): TDNN, RMLP, RNN, NMCLM
 - State-based: Kalman filters, Bayesian classifiers, HMMs
- Complexity of models
 - O(n), O(n²), O(mn²), O(n³), ...
 - for n neurons, m models

Movemes

[DiGiovanna, Sanchez, Fregly, and Principe, "Arm motion reconstruction via clustering in joint angle space" IJCNN, 2006]

Experimental Setup

Experimental setup distribution

Basic computation structure

- Online real-time (hard and soft deadlines)
- Offline recreation of experiments from data in storage

Preliminary computational estimates

Complexity	O(n)	O(n²)	O(n³)
Avg. iteration time	277 µs	119 ms	115 s

Communication = 8 ~10 ms

Intel Pentium III 1.13GHz 512KB Cache, 1GB Memory, Fedora 4

32 channels from electrodes, 3 neurons per channel, 10 sliding taps, n = 960

The In-VIGO approach

✓ local control, decentralized management

UNIVERSITY OF FLORIDA

- open general-purpose standards
- ✓ non-trivial QoS

BMI portal

- Reservation of resources
 - For online experiments
- Access to data sets
 - For replay and analysis of experiments
- Specification of models
 - For use in either offline or online experiments
- Access to computational tools
 - For analysis, simulation, visualization

Resource management system

Requirements for Grid-based DDBMIs

- resource discovery based on quality of service specifications and scheduling based on virtual machine reservations,
- 2. dynamic steering of applications to computing resources based on run-time feedback from application inputs.

Closing remarks

- Multidisciplinary collaboration
- Research goals
 - novel BMI system using motor control theory.
 - understanding of human brain dynamics.
 - definition of movemes in motion to provide structure for our model.
 - middleware to run closed-loop, real-time BMI experiments via grid computing
- Preliminary results
 - movemes framework for movement specification and decomposition
 - analysis of spatial neural activity
 - characterization of communication/computation delays

Acknowledgements

- Graduate students
 - Shalom Darmanjian
 - Jack DiGiovanna
 - Prapaporn Rattanatamrong
 - Ming Zhao
- BJ Fregly
 - collaboration and support with the musculoskeletal modeling.
- Wendy Murray (Stanford University)
 - for use of the skeletal model.
- National Science Foundation
 - NSF Grant No. CNS-0540304 under the DDDAS program

Publications

- J. DiGiovanna, J. C. Sanchez, BJ Fregly, and J. C. Principe, "Arm motion reconstruction via clustering in joint angle space" presented at IEEE Intl. Joint Conf. Neural Networks, Vancouver, BC, 2006
- J. DiGiovanna, J. C. Sanchez, and J. C. Principe, "Improved linear BMI systems via population averaging" submitted to IEEE EMBS conference, New York, NY, 2006

