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Abstract. In operations, simulation and control of power systems, the
presence of real-time data relating to system states can yield precise fore-
casts and can enable robust active control. In this research we are devel-
oping efficient and robust methods to produce “data enhanced” reduced
order models and filters for large-scale power systems. The application
that this paper focuses on is the creation of new data-driven tools for
electric power system operation and control. The applications systems
include traditional SCADA systems as well as emerging PMU data
concentrators. A central challenge is to provide near real-time condition
assessment for ”extreme events,” as well as long-term assessment of the
deterioration of the electrical power grid. In order to provide effective
guidance for power system control, we are also developing visualization
methods for integrating multiple data sets. These visualization meth-
ods provide an up-to-date view of the system state, and guide operator-
initiated power system control.

1 Introduction

The current power system operation paradigm relies heavily on two components:
human operator experience and model-based analysis. Sensors currently exist at
hundreds of thousands of locations dispersed at generating stations, at major
network substations, and at loads. This sensor data is currently transmitted by
Intelligent Electronic Devices (IEDs) to local and area control centers through
Remote Terminal Units (RTUs) by a two-way network called a Supervisory
Control and Data Acquisition (SCADA) system. In the past few years the re-
structuring of the electric power industry has created Regional Transmission Or-
ganizations (RTOs) and Independent System Operators (ISOs) that may also
have access to certain amounts of this data. The area control centers, RTOs,
and ISOs currently utilize this data in raw form for status displays and alarm-
ing. This data is also used as the input to a system State Estimator (SE) that
is designed to filter erroneous data, create topology estimates, and provide the
best estimate of the current state of the network configuration and the values
of key indicators (voltages, currents, power and frequency). Human operators
make judgments and decisions based on this data and on traditional analysis
tools that utilize this data. At the very local level, automatic protection systems
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react to measured data as they are programmed, with their primary objectives
being to save equipment from damage in the event of abnormal conditions (light-
ning strikes, short circuits, etc.) and to continue to serve customers even under
component failures.

The main objective of this research is to develop new algorithms and tools for
the distributed collection, sharing, and harnessing of data for cooperative health
monitoring and security assessment of power systems in real time. Fundamental
concepts and technology for achieving this objective exist today in the areas
of power systems, system theory and computer science, but harnessing them
to achieve this vision requires the significant multidisciplinary concerted effort
presented here. This work aims at making fundamental contributions to the
necessarily multidisciplinary systems required for data utilization in monitoring
and control of interconnected engineering systems. The application we focus on
is the creation of new data-driven tools for electric power system operation and
control. The systems include traditional SCADA systems as well as emerging
Phasor Measurement Unit (PMU) data concentrators. Traditional SCADA
equipment provides massive amounts of data that can be processed for diagnoses,
awareness indicators, and other new operational tools. This effort will focus on
data-driven tools for power system operations, which includes filtering, low-order
modeling, and automated visualization for power system health monitoring and
security assessment.

2 Data-Driven Tools for Power System Operations

Power system state estimation, security analysis, and real-time operation are
currently heavily dependent on model parameters and assumed topology infor-
mation. With the restructuring of power grid operations, the large geographical
nature of the interconnected system is making the computation of state estima-
tion more challenging. In addition, the massive volume of data and real-time
alarms is making situational awareness and decision-making issues more severe.
At the same time, new technologies are emerging to provide new types of data
that can be utilized for both monitoring and control.

2.1 Signal Process: Power System Model

As the Data Grid maps the Power Grid in real time, it would be useful to
have a view into the future evolution of the various variables. The traditional,
time tested way to simulate the dynamic behavior of a power system is from
a mathematical parameter-driven model of the system. The difference between
the actual measured data and the simulated data can be used to improve the
accuracy of the model. A typical dynamic model is an event-driven system so
that we have a large-scale hybrid differential algebraic equations(DAE) system
of the form:

Ẋt = f(Xt, Zt, λ), X0 = x ∈ R
n, Z0 = z ∈ R

m (1)
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0 =
{

g1(Xt, Zt, λ), s(Xt, Zt, λ) < 0,
g2(Xt, Zt, λ), s(Xt, Zt, λ) > 0.

In equations (1) a switching occurs when the switching function s(x, z, u) = 0.
For example, if a device is switched into service at time t = tsw, then the switch-
ing function in this case can simply be defined as s(x, z, u) = t−tsw. In the above
model, x are the dynamic state variables such as machine angles, velocities, etc.;
z are the algebraic variables such as load bus voltage magnitudes and angles;
and λ are the system parameters such as line reactances, generator mechanical
input power, and fault clearing time. Note that the state variables x are continu-
ous while the algebraic variables can undergo step changes at switching instants.
The initial conditions for equation (1) are such that z satisfies the equation

g(x, z, u) = 0. (2)

The model in equation (1) is imperfect. We assume that system (1) is subject
to small random jerks, a fast perturbation process ξ that represents the unmod-
eled dynamics of the system, which we assume to be a Markov process. Then
equations (1) become

Ẋt = f(Xt, Zt, ξt; λ), X0 = x ∈ R
n, (3)

0 = g(Xt, Zt; λ), Z0 = z ∈ R
m.

2.2 Observation Process: Phasor Measurement Unit

The introduction of PMU technology on a wide-area basis is offering a fruitful
direction for dynamic data utilization. The PMU technology is providing Global
Positioning System (GPS) based time stamping of key power system states,
including phase angles of bus voltages. The PMU observation process {Yt : t ≥
0} is a function of (Xt, Zt) corrupted by noise ηt, and is given by

Yt = h(Xt, Zt) + ηt (4)

where h is called the sensor function that transforms the model variables into
observed variables. Assuming data gathering and concentration at the rate of 60
measurements per second, this information can be used to detect dynamic trends
as well as steady-state conditions. Initial research in this area indicates that the
dynamic filtering of the PMU is very nearly equivalent to the mathematical
filtering of the singular perturbation process in traditional power system dynamic
modeling. This is important because it creates a one-to-one link between the
dynamic model states and the measured data. This makes the data a valuable
input for model validation, post-mortem analysis, and remedial action schemes in
real-time control. Since most dynamic modes of interest are considerably slower
than 60 Hz, these measurements will be useful in predicting damping of critical
modes of oscillation.
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2.3 Filtering

The theory of nonlinear filtering forms the framework in which problems of data
assimilation for the nonlinear power network models will betreated. In this work,
we consider the situation where the nature of the monitored environment will be
captured by a Markovian state-space model thatinvolves potentially nonlinear
dynamics, nonlinear observations, and Gaussian observation noises. Our goal is
to perform sequential estimation of the current systemstate from equation (2)
at multiple sensor nodes from equation (4) in the power network system. In a
nonlinear environment, particle methods, which includes sequential Monte Carlo
and interacting particle filters are very useful. We will designdistributed parti-
cle filters (or sequential algorithms) that can dynamically fuse the information
recorded by the sensors without requiring excessive exchange of data. This work
is being initiated through deterministic analysis of data measurements that de-
termine initial conditions for model-based dynamic simulations. The results will
be used in security assessment algorithms.

Using the algebraic equations (2), the variable Zt can be eliminated in the
model (1), as well as in the observer (4). Hence, in a discrete state space version
of the model the state xk ∈ R

n and the observation yk ∈ R
p is described by

xk+1 = fk(xk, ξk) (5)

yk = hk(xk, ηk), (6)

where fk : R
n×R

m → Rn and hk : R
n×R

r → R
p are possibly nonlinear functions

of the state xk. The process and observation errors are represented by Gaussian
white noise sequences wk and vk respectively and assumed to be independent to
each other. Given the initial density p(x0), we seek to find the filtered estimation
of the state i.e., the estimation of the state xk based on the history of the
past observation y1:k defined by {yi : i = 1 . . . n}. Since xk can be considered
as a random variable, the characterization of xk is given by the conditional
probability density, p(xk|y1:k). In the Bayesian approach we follow, this can be
obtained through recursive predictions and observations. Given an initial state,
a priori estimation of the state is calculated according to equation (5) in the
prediction stage. After a new observation is taken a priori estimation is updated
to become a posteriori state estimation.

By Bayesian filtering, we mean any technique that uses Bayes’ formula to
estimate the posterior density p

(
xk|y1stk

)
for each k = 1, 2, · · · , . This usually

consists of two important steps called prediction and update.

i. (Bayesian Prediction) This step maps the previous posterior density
p

(
xk−1|y1stk−1

)
into the one-step prediction density p

(
xk|y1stk−1

)
. The for-

mula for this step follows immediately from Bayes’ formula and the Markov
property of the system dynamics as

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (7)
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ii. (Bayesian Measurement Update) Now we want to use yk and the Bayesian
prediction p

(
xk|y1stk−1

)
from the first step to calculate the posterior density

p
(
xk|y1stk

)
. Then a priori density estimation at k will be updated according

to a new observation yk via Bayes’ formula and using once again the Markov
property of the system dynamics as the posteriori estimation

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)∫

p(yk|xk) p(xk|y1:k−1)dxk
. (8)

Under the assumption of linearity, where system and observation dynamics are
linear functions of xk, the Kalman filter can be derived from the recursive rela-
tions (7) and (8). Due to the linearity the conditional probability density function
p(xn|y1:n) becomes Gaussian and characterized by its mean and variance.

The power systems that we are interested in are nonlinear and the probabil-
ity density functions are no longer Gaussian. As a remedy, an extended Kalman
filter (EKF) is used in which the state and observation equations are linearized
around the current state as a first approximation. In a strongly nonlinear envi-
ronment these assumptions may undermine filter performance. Furthermore, the
application of EKF to very high dimensional problems such as power systems,
where the dimension of x and z for a typical Eastern U.S. power network can
be of the order of 5,000 and 50,000 respectively, would be a computationally
demanding problem even for state-of-art supercomputers. This is because the
EKF needs to store and manipulate error covariance matrices, which becomes
unmanageable for high dimensional models. In addition to this, the EKF as-
sumes that the errors in the state estimates are small and that the state errors
propagate through a separate linearized system. Because of this, EKF has a
fundamental flaw since it is based on the attempt to approximate non-Gaussian
density with the Gaussian one through a closure scheme, and this causes several
nontrivial problems such as an unbounded error variance growth [4].

A recent, more efficient class of filtering methods is called particle methods,
which includes sequential Monte Carlo, ensemble Kalman filters and interacting
particle filters. Particle algorithms are techniques for implementing a recursive
Bayesian filter by Monte Carlo simulations (see for example, Arulampalam et
al [1]). Ensemble Kalman filters (EnKF) were proposed to resolve these defects
in EnKF [4]. Approximating an error covariance matrix by an ensemble of states
instead of storing a full matrix certainly reduces the storage demand. Replacing
the linearized state evaluation in EnKF with integration of each member of
the ensemble forward in time using Markov Chain Monte Carlo method made
EnKF possible to handle nonlinear problems and succeed in many areas of
application [5] since its development.

In a similar vein to EnKF, the particle filter approach uses an ensemble of
states. But the ensemble is used to represent the probability density functions
and the update from measurements is done by Bayes’ rule (8) instead of the
Kalman filter equation. For this reason, particle filters, in principle, are applica-
ble to any nonlinear dynamical system. While there are many variants of particle
filters, the basic algorithm underlying them is same. First, the prior density is
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approximated by sample particles with weights. These particles are evolved ac-
cording to system dynamics and once the new measurement yk is obtained, new
weights are assigned proportional to the likelihood of each prior sample. To avoid
degeneracy of the samples and make sure the convergence of the algorithm, re-
sampling is used if necessary. These steps are recursively done for each iteration.

In this work we will apply the extended Kalman filter for almost linear appli-
cations and the particle filters to the highly nonlinear system state estimation
framework and compare their performance. Armed with these algorithms, we
should be able to handle a large class of nonlinear filtering problems.

3 Software Tools

The heart of the work is the development of an overall system framework for
a new approach to power system security monitoring. We are developing glob-
ally coordinated monitoring and decision making tools, and this requires global
data sharing and coordination. The software tools and methodologies must be
designed taking into account the physical power system dynamics and behavior
in response to control actions and contingencies. The enabling computer science
technologies to achieve this objective are Grid computing.

We are incorporating existing Grid computational tools and developing new
tools, both to analyze and interpret electrical power grid state data and to
integrate such data into power grid simulations to predict the future state of the
system, as described in this paper. The data grid technology to be used in this
project includes Web and Grid service technologies and standards, such as the
Globus toolkit [6] and the Storage Resource Broker [2]. One way in which we are
contributing to Grid computing technology lies in building effective methods for
integrating power grid measurement data into both data analysis and simulations
in a distributed computing and sensing environment.

The data grid work builds on our prior work on component-based tools for
Grid environments, including DataCutter [3] and InterComm [8]. Much of this
prior work has focused on providing high performance and flexibility in order to
enable components to be effectively deployed onto distributed sets of computa-
tional resources. However, for this effort we are developing methods for providing
performance guarantees. In the power grid monitoring and control environment,
limiting response times is crucial. DataCutter is a system for enabling application
developers to write simple functions (called filters) to perform parts of a data
analysis application, connect the filters into a graph that performs all the desired
processing of the data, and then deploy the filters onto remote computational re-
sources. Standard Grid technologies are used for authentication across multiple
sites and for starting up the required services. In addition, we have been building
tools to index datasets stored across multiple sites [7], to enable efficient access
for certain types of data requests (multidimensional range queries). InterComm
is a programming model and runtime library for achieving direct data transfers
between data structures managed by multiple parallel and sequential programs.
Each program does not need to know in advance (i.e., before a data transfer is
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desired) any information about the program on the other side of the transfer.
All required information for the transfer is computed at runtime. InterComm
allows a program to specify data distribution across processors in each program
in a flexible manner. The InterComm framework also includes the infrastruc-
ture required to decouple the specification of when data transfers occur between
coupled sets of components from the logic within the components. A separate
coupling specification, written by the application integrator (the person building
the coupled set of components), is used by the framework to specify when data
transfers between coupled components should occur.

In this work, both InterComm and DataCutter services are being extended
and enhanced to deal with the large, frequent data transfers required from mul-
tiple sources to parallel data analysis, control modules, and simulations. More
specifically, InterComm services are being integrated with DataCutter services
to deploy various components at distributed sites, and tie them all together to
perform the required analyses. These services will also be used to couple the sen-
sor data into the simulation models as it is produced and consumed, in a flexible
manner. Much of the work also involve providing standard Web and Grid service
interfaces, to enable the use of services developed in the wider Grid and Web
communities, for security, authentication, information discovery, etc. The design
and implementation of those services, including tools and interfaces that can be
easily employed by power and control systems engineers, is a major challenge.

4 Automated Visualization for Power System Health
Monitoring

Visualization techniques are being investigated to maximize the benefit of data
streams and data content. Efforts to enable a more meaningful operator view
include color contouring of wide-area data and 3-D animation. Examples of the
data visualized are network bus voltages, line percent loadings, and area eco-
nomic data. Displays are being tested under a variety of different simulated
operating points to represent different emergency system conditions. The goal
of this testing is to determine the displays that are best at helping users actu-
ally correct system problems. Our current hypothesis is that such visualization
would be useful in helping people see subtle changes in key measures that might
be important precursors to impending system problems. For operational use we
envision the ability to ”play back” animated visualizations showing the variation
in the system conditions over a specified time period, similar to the animated
weather radar images used to track storms. We will experiment with visualizing
other system quantities, such as real power flow, and the hundreds of power
transfers that simultaneously take place between the different control areas.

An example of such a data-driven visualization that we have performed is
the contours of the per unit voltage magnitudes at several thousand 115/138
kV buses in the Ohio region for the simulated August 14, 2003 conditions im-
mediately before the beginning of the events that led to the infamous blackout.
Those contours provide an overview of the voltage profile of the entire region.



Data-Driven Power System Operations 455

Hence the display is quite effective for providing situational awareness. For ac-
tual power systems this data has been traditionally supplied in real-time by the
SCADA system with typical refresh rates varying between 5 and 30 seconds.
In the near future, as PMUs become more ubiquitous, much faster refresh rates
will be possible, allowing visualization of a system as it is moving toward voltage
instability. The contours may show subtle oscillations in bus voltage magnitudes
or angles.

Another possible advantage of using data driven, wide-area visualizations
arises because power system operation is it tends to be cyclic, with strong a
strong daily, weekly and seasonal cycles (e.g., very high loads on weekday after-
noons during the summer, and much lower loads during the weekend nights in
the spring or fall). Hence an experienced system operator might readily detect
patterns that seem abnormal. For operational use one might envision the abil-
ity to ”playback” animated visualizations showing the variation in the system
conditions over a specified time period, similar to the animated weather radar
images used to track storms. For human factors testing we might create anima-
tion sequences of different visualizations and test how readily the experiment
participants detect something abnormal. We will also experiment with visualiz-
ing other system quantities, such as real power flow, and the hundreds of power
transfers which simultaneously take place between the different control areas.
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