
The Omni Macroprogramming Environment for Sensor
Networks

Asad Awan, Ahmed Sameh, and Ananth Grama

Department of Computer Sciences, Purdue University, W. Lafayette, IN 47907

Abstract. Structural sensing and control is an important application of the
DDDAS paradigm. Our work on structural sensing and control has several key as-
pects, including model reduction, control, simulation, and validation. Motivated
by our work on validation using an actual three-storeyed structure, we are de-
veloping a comprehensive systems environment, Omni, for macroprogramming
sensor networks. While there have been efforts targeted at enabling programmers
to write lean applications for individual sensor nodes, there have been few efforts
targeted towards allowing programmers to program entire networks as distributed
ensembles. Omni provides an intuitive and efficient programming interface, along
with operating system services for mapping these abstractions into the underlying
network. In this paper, we provide a high-level overview of the Omni architec-
ture, its salient features, and implementation details. The Omni architecture is
designed to be a flexible, extensible, scalable, and portable system, upon which a
wide variety of DDDAS applications can be built.

1 Introduction and Motivation

An important application of the Dynamic Data-Driven Application Systems (DDDAS)
paradigm is in the control of large civil structures. It is estimated that the United States
has an investment of over $20 trillion in its civil infrastructure. While these systems are
in constant cycle of deterioration and renewal, they are expected to withstand extreme
loads caused by natural disasters as well as human factors. Protecting this investment
is of prime social and economic importance. The serviceability and safety of these sys-
tems, ranging from high-rise structures and long-span bridges to major pipelines that
traverse the U.S., can be greatly improved if damage can be detected and controlled
intelligently before catastrophic failures. The technology for detection and control of
damage is, in principle, now available through low-power sensors, actuators, and com-
munication and computing elements. As part of our NSF-funded project (ITR/DDDAS),
we are developing the necessary computational infrastructure to enable: (a) the effective
design and economical construction of highly robust smart structures capable of signif-
icantly greater resilience to catastrophic events; (b) enhancing robustness of existing
structures by suitably retrofitting smart sensor-actuator complexes; (c) predicting and
mitigating the impact of catastrophic events in real time; and (d) off-line data archival
and analysis technologies for establishing failure causalities and design enhancements.

We identify several intellectual challenges in the eventual application of closed loop
control to structures. We specifically target algorithms and techniques for model reduc-
tion and control, analysis and simulation, and systems infrastructure for real-time sens-
ing and actuation. As part of our prior work, we have developed extensive algorithmic

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 465–472, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

466 A. Awan, A. Sameh, and A. Grama

and software infrastructure for model reduction and control [16, 10, 8, 6, 9, 2, 3, 5, 4, 14],
simulation, and visualization [11, 12, 13]. Our work on simulation and visualizaiton re-
sulted in the first comprehensive science-based analysis of the Pentagon crash. Subse-
quent efforts have modeled heat-induced structural failure in high-rise buildings. Our
current efforts in this direction are aimed at a comprehensive modeling of the struc-
tural failure of the World Trade Center. Our modeling and simulation work is comple-
mented by experimental tests at the Bowen Lab of Structural Engineering at Purdue.
This unique facility provides us with a powerful validation mechanism for our compu-
tational approaches.

(a) (b)

(c)

Fig. 1. Some elements of our current sensing infrastructure: (a) Mica 2 motes with 8MHz At-
mega128 µc, ADXL202 Micro-electro-mechanical (MEMs) 2-D accelerometer (range +/−2g,
sensitivity 12.5%/g, 2mg resolution at 60Hz, power < 0.6mA at ∼ 3V); (b) laser displacement
sensor, Acuity AR600, accuracy up to 0.04 in, sampling rate up to 1.25KHz; and (c) commu-
nication and in-network processing hubs with 400 MHz XScale processors, and communication
interfaces for FM, Bluetooth, and 802.11b

As part of these validation efforts, we have built a structural sensing infrastructure
based on accelerometers, high-accuracy laser displacement sensors, strain gages, and
compute and communication elements (Figure 1). In building this sensing infrastruc-
ture, we realized the critical need for a systems environment for (macro)programming
sensor networks. This macroprogramming environment is designed for real-time sens-
ing as well as affecting control. It provides support for essential characteristics, includ-
ing robustness, reconfigurability, and real-time guarantees. In the rest of this paper, we
describe the architecture, programming model, and current status of our development
efforts towards the Omni environment.

The Omni Macroprogramming Environment for Sensor Networks 467

Fig. 2. An instrumented test infrastructure at the Bowen Labs (three story 30′ × 50′ structure)
with extensive actuation and response testing capability

2 Overview of the Omni Macroprogramming Environment

An operating system architecture defines the design paradigm, and hence behavior and
performance, of the applications built on top of it. We present a second generation
sensor network operating system suite, Omni, which facilitates rapid development of
efficient self-organized distributed applications for sensor networks. Existing sensor
network operating systems (for example [15, 7, 1]) allow the development of network-
enabled applications at each node, however, their design does not directly facilitate the
role of application components in the distributed behavior of the sensor network as
a whole. While these systems address the problem of developing lean (low CPU and
memory overhead) applications, they are apathetic to the complexity of designing and
implementing high performance distributed functionality in sensor networks. This is a
critical requirement for the development of large-scale sensing and control applications.

Other approaches for designing and implementing distributed behavior over sen-
sor networks include the use of domain specific programming languages (for exam-
ple [20, 19]). However, the use of high level languages often abstracts away low-level,
system dependent details, which often need to be tuned, given the resource con-
straints of sensor nodes. Finally, stream processing database systems for sensor net-
works ([18, 17]), allow SQL-type queries and aggregation operations over data streams.
While this approach affords ease and flexibility, the performance on (typically) resource
constrained nodes is limited due to the generality of the database stream management
system (DSMS), and customization is limited by the complexity of the design and im-
plementation of the system.

Apart from aiding the design and development of distributed applications, Omni
provides several other key features. Similar to SOS [7], we support dynamic update
of application components and OS services. However, the distributed design paradigm
supported by our system directly allows network wide self-organized adaptation rather
than the updation of each module treated independently. Our application development
paradigm supports concurrency safety between application components, executing on
the same node, irrespective of the underlying scheduling policy or the number of

468 A. Awan, A. Sameh, and A. Grama

on-board processing elements. The stream processing paradigm allows a programmer
to view processing in each component of the application as an independent transac-
tion and relieves the programmer from the burden of maintaining synchronization in
a distributed system. Similarly, the stream processing abstraction is ideally suited to
the ad-hoc peer-to-peer model of sensor network systems in contrast with client-server
based abstractions such as RPC.

3 Omni Architecture

The design of the Omni OS focuses on providing abstractions that allow rapid devel-
opment of robust and efficient distributed applications for sensor network systems. Our
design separates the core OS kernel, OS services, and distributed applications. The core
kernel and the OS services control the behavior of a single node, while applications
implement the distributed system behavior of the sensor network. Following the stream
processing model the applications are developed using a box-and-arc model. Each box
represents a processing element and arcs represent data channels. However, unlike most
systems that are based on this model, we allow runtime reconfiguration of the model,
including changing interconnections and replacement of processing elements (PEs).
The applications view the sensor network as a single large system, albeit distributed,
allowing simplified design. Each processing element is conceptually a single execution
unit interfacing only via the input and output channels. A PE can not request dynamic
memory except for the dynamically growing input and output queues. In practice, the
isolation of a PE provides strong concurrency and memory safety properties. The chan-
nels provide transparent and efficient transportation of data streams between PEs in
the distributed space (i.e., communicating PEs can be located on the same, or different
physical nodes). Channels are implemented as low-overhead lock-free single producer,
multiple consumer (SPMC) queues mitigating communication overheads.

3.1 Omni Processing Elements

The design specification of a PE only declares its functional behavior and typed input
and output streams. Therefore, at design time, a PE’s relationship with other PEs, or
its placement in an application (fundamentally, which is a given instance of the box-
and-arc diagram) is not known. The separation of the design of a PE from application
design enforces modularization and allows code reuse. Once a repository of functionally
specific PEs is developed, a new application can be developed rapidly by designing a
connection diagram and providing complementary specifications. These diagrams can
be statically checked, e.g., for typed-correctness, to verify that the application meets
the distributed behavioral specification. Static checking also removes the burden of ver-
ifying interfaces at runtime on resource constrained nodes. In existing sensor network
OS examples [7], limited verification is performed at runtime, which affects the safety
properties of the system. The expected complexity of interactions between application
components further burdens the programmer and makes debugging difficult.

Conceptually a PE is treated as a single unit of execution. At runtime this abstraction
is enforced by treating each execution of a PE as a transaction. Each transaction reads

The Omni Macroprogramming Environment for Sensor Networks 469

input streams, generates output streams, and on success requests the system to commit.
A commit involves removing the consumed data from the input streams and making the
output streams available for downstream processing. Inability of the OS to perform the
commit results in no change to the input or the outputs. This is notified to the PE and
a re-execution of the entire transaction follows. This model also allows the system to
preempt or kill a currently executing PE without generating any inconsistency.

The processing elements are implemented using C language and are compiled using
platform specific gcc compiler and linker scripts (to enable dynamic runtime loading).
This allows seamless portability of the PEs requiring only recompilation for different
platforms. The application is a specification expressed as a schema and is processed
by our custom compiler, which in general is platform agnostic, but may be modified to
account for optimizations or irreconcilable differences between target platforms. In the
future, application design may be generated by a WYSIWYG (what you see, is what
you get) GUI front end that generates the schema.

3.2 Omni OS Services

The OS services are designed using the same box-and-arc model, thus are similar to
services in a micro-kernel based design. Here, the key difference is that a single multi-
plexed queue is replaced by point-to-point channels. The connection between services
is determined via the box-and-arc configuration rather than use of addresses (which,
in practice, are often hard-coded) as in most micro-kernel architectures. In contrast to
an application PE, OS services are designed to control the underlying hardware and
behavior of each node independently. The operational similarity between PEs and OS
services allows a uniform OS runtime architecture, while the design time specifications

photo sensor
threshold

interface

clock

compress

average

interface
file system

Mote 1

Mote 2

Mote 3

Mote 4

Serverdeployment

Fig. 3. An example stream processing application connection graph and its deployment over a
sensor network system

470 A. Awan, A. Sameh, and A. Grama

/* ------ A basic application schema ----- */
@ PHOTO_SENSOR_NODE:
TRIGER[Clock, RATE] -> ADC[PHOTO_SENSOR]

@ NODE_ANY:
ADC[PHOTO_SENSOR] -> pe_threshold(s_photo_t in)
pe_threshold(s_photo_t out) -> pe_average(s_photo_t in_p)
pe_average(s_avg_t out) -> pe_average(s_photo_t in_avg+)

@ NODE_FAST_CPUS:
pe_threshold(s_photo_t out) -> pe_compress(s_photo_t in_p)

@ NODE_SERVERS
pe_compress(s_comp_t out_c) -> FILE[COMPRESS]
pe_average(s_avg_t out) -> FILE[AVG]

/* ------ Threshold function ------ */
int pe_threshold(flag_t *in_flag, flag_t *out_flag,

/*in*/ s_photo_t *in, /*out*/ s_photo_t *out)
{

stream_t *ins, *outs;

ins = get_data_stream(in);
outs = get_data_stream(out);

while(has_data(ins))
if (get_data_val(ins) > THRESH)

set_data(outs, ins);

commit(out_flag, in);
commit(out_flag, out);
return OK;

}

Fig. 4. Code sample illustrating the application schema (for the example in Figure 3) and the C
Language implementation of the threshold PE

and compile time enforcement maintain the conceptual differences. Note that at the ap-
plication level, OS services and the core OS are invisible in the application connection
diagram. For example, an OS service implementing the routing service is abstracted
away by the distributed channel model used by the application PEs. However, the de-
veloper still has control over the low-level system components, for example in this case
the network implementation of the channel, due to the ability to modify the OS services
to monitor and manage system hardware. At the platform level, the core OS kernel
provides a hardware abstraction layer (HAL) decoupling the OS services from the plat-
form hardware. Thus, the system design and development is cleanly partitioned into
application, OS services, and core OS components.

The OS services and applications (including individual PEs) can be reconfigured and
updated at runtime to adapt the performance and functionality of a single node or the
entire sensor network system, respectively. The OS also has the capability to autonom-
ically reconfigure the components based on design time instructions and specifications.
Providence for terminating an executing PE or OS service at runtime allows updates
without sacrificing consistency of the data stream (due to the transaction abstraction).

An example application is illustrated in Figure 3. A connection diagram with dif-
ferent processing elements is shown at the top. At the bottom the deployment of this
conceptual connection diagram over the network is illustrated. Different processing
elements are assigned to different nodes based on an application schema, shown in

The Omni Macroprogramming Environment for Sensor Networks 471

Figure 4). The deployed processing elements are transparently connected by chan-
nels in the distributed space. Figure 4 also provides an example implementation of the
threshold PE in C language.

4 Status of Development Efforts

We are currently developing and exhaustively testing the Omni environment targeted
for the AVR (e.g., Mica2 mote) and POSIX platforms. We are also developing utilities
for static checking, schema compilation, and over-the-network PE/OS service updation
tools. We will port the HAL to other sensor node platforms, allowing reuse of the PE,
OS service and most core OS components.

The Omni architecture provides a flexible, portable, and scalable platform over
which a number of DDDAS applications can be built. These include data acquisition
and sensing, control, as well as analyses applications. We aim to release the entire
Omni environment after comprehensive validation, along with exemplar applications
(from structural sensing), over the public domain.

References

1. Mate: Programming Sensor Networks with Application Specific Virtual Machines.
http://www.cs.berkeley.edu/∼pal/mate-web/.

2. P.A. Absil, R. Sepulchre, P. Van Dooren, and R. Mahony. Cubically convergent iterations for
invariant subspace computation. SIAM J. Matrix Anal. Appl., 2003.

3. Y. Chahlaoui and P. Van Dooren. Benchmark examples for model reduction of linear time
invariant dynamical systems. Model Reduction of Dynamical Systems, Eds. P. Benner et al.,
2004.

4. Y. Chahlaoui and P. Van Dooren. Model reduction of time-varying systems. Model Reduction
of Dynamical Systems, Eds. P. Benner et al., 2004.

5. Y. Chahlaoui, K. Gallivan, A. Vandendorpe, and P. Van Dooren. Model reduction of second
order systems. Model Reduction of Dynamical Systems, Eds. P. Benner et al., 2004.

6. Y. Chahlaoui, D. Lemonnier, A. Vandendorpe, and P. Van Dooren. Second-order balanced
truncation. Lin. Alg. Appl., 2003.

7. Chih-Chieh Han and Ram Kumar Rengaswamy and Roy Shea and Eddie Kohler and Mani
Srivastava. SOS: A Dynamic Operating System for Sensor Networks. In Proceedings of
the Third International Conference on Mobile Systems, Applications, And Services (Mobisys
05), 2005.

8. P. Van Dooren. The basics of developing numerical algorithms. Control Systems Magazine,
18-27, 2004.

9. K. Gallivan, X. Rao, and P. Van Dooren. Singular riccati equations stabilizing large-scale
systems. Lin. Alg. Appl., 2003.

10. Y. Hachez and P. Van Dooren. Elliptic and hyperbolic quadratic eigenvalue problems and
associated distance problems. Lin. Alg. Appl., 371:31-44, 2003.

11. C. Hoffmann, S. Kilic, V. Popescu, and M. Sozen. Integrating modeling, visualization and
simulation. IEEE Computating in Science and Engineering, January/February 2004.

12. C. Hoffmann, S. Meador, S. Kilic, V. Popescu, and M. Sozen. Producing high-quality visu-
alizations of large-scale simulations. IEEE Visualization, 2003.

472 A. Awan, A. Sameh, and A. Grama

13. C. Hoffmann and V. Popescu. Fidelity in visualizing large-scale simulations. Computer-
Aided Design, 2006. To appear.

14. B.F. Spencer Jr., S.J. Dyke, M.K. Sain, and J.D. Carlson. Phenomenological model of a
magnetorheological damper. ASCE Journal of Engineering Mechanics, 2006. To Appear.

15. Philip Levis, Sam Madden, David Gay, Joseph Polastre, Robert Szewczyk, Kamin White-
house, Alec Woo, Jason Hill, Matt Welsh, Eric Brewer, and David Culler. TinyOS: An
Operating System for Sensor Networks. Ambient Intelligence.

16. W.H. Liao and C.Y. Lai. Harmonic analysis of a magnetorheological damper for vibration
control. Smart Mater. Struct., 11:288-296, 2003.

17. Samuel Madden, Michael Franklin, Joseph Hellerstein, and Wei Hong. TinyDB: An Acqui-
sitional Query Processing System for Sensor Networks. In Proceedings of TODS, 2005.

18. Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks. In Proceedings of OSDI’02, December
2002.

19. Ryan Newton, Arvind, and Matt Welsh. Building up to Macroprogramming: An Intermediate
Language for Sensor Networks. In Proceedings of the Fourth International Conference on
Information Processing in Sensor Networks (IPSN’05), April 2005.

20. Ryan Newton and Matt Welsh. Region Streams: Functional Macroprogramming for Sensor
Networks. In Proceedings of the First International Workshop on Data Management for
Sensor Networks (DMSN), August 2004.

	Introduction and Motivation
	Overview of the Omni Macroprogramming Environment
	Omni Architecture
	Omni Processing Elements
	Omni OS Services

	Status of Development Efforts
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

