Model-Driven Dynamic Control of Embedded Wireless Sensor Networks

Paul G. Flikkema1, Pankaj K. Agarwal2, James S. Clark2, Carla Ellis2, Alan Gelfand2, Kamesh Munagala2, and Jun Yang2

1 Northern Arizona University, Flagstaff AZ 86001 USA

2 Duke University, Durham, NC USA

Abstract. Next-generation wireless sensor networks may revolutionize understanding of environmental change by assimilating heterogeneous data, assessing the relative value and costs of data collection, and scheduling activities accordingly. Thus, they are dynamic, data-driven distributed systems that integrate sensing with modeling and prediction in an adaptive framework. Integration of a range of technologies will allow estimation of the value of future data in terms of its contribution to understanding and cost. This balance is especially important for environmental data, where sampling intervals will range from meters and seconds to landscapes and years. In this paper, we first describe a general framework for dynamic data-driven wireless network control that combines modeling of the sensor network and its embedding environment, both in and out of the network. We then describe a range of challenges that must be addressed, and an integrated suite of solutions for the design of dynamic sensor networks.

LNCS 3993, pp. 409-416.

Last modified: