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Motivational Aspects

Answer Some Questions for systems where 
BOTH input and output are measurable:

Are data-driven modeling and simulation practices 
equivalent to the non data-driven (or model driven) 
practices the same from the QV&V perspective?

Do data-driven models require validation in the 
model-driven modeling sense?
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Term Definitions

Modeling: Establishing, a conceptual (analytical, 
mathematical) and computational (discretization, 
algorithmic, programmatic, visualization) 
representation of the system such that its behavior is 
the same with that of the actual physical system.
Simulation: Generating predictive behavior of the 
system through exercising the a previously 
established model of the system.
Model-Driven: Modeling uses some a priori concept 
of how the system works from an inside-out 
perspective (Bottom-Up)
Data-Driven: Modeling uses only behavioral data 
and ignores internal composition (Top-Down)
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System-Model-Behavior
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MODELING A  MULTIPHYSICS SYSTEM

Homogeneous System
Homogeneous Fields
i.e. Deformable Media
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MODELING A  MULTIPHYSICS SYSTEM
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MODELING A  MULTIPHYSICS SYSTEM

Methodologies for Developing Potential Functions

Potential Function

Lagrangean/Hamiltonian Thermodynamic

Equilibrium Non-Equilibrium

Compensating Fields Internal Variables
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MODELING A  MULTIPHYSICS SYSTEM

Model driven coupled field methodology

Is # of equations >
from # of variable pairs

Consider theoretical physical
system characteristics

& define state parameters

Define dependent &
independent variable pairs

Employ conservation 
laws

Postulate constitutive
equations

Employ additional axioms

Rewrite previous 
restrictions to field eqtns.

Define BV problem for
given structure

Solve field equations

Evaluate & Display results
Simulate system response

Determine material 
properties  constants

yes

no

Keep and Stop

Validated?

yes

no
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MODELING A  MULTIPHYSICS SYSTEM

AXIOMS OF CONSTITUTIVE BEHAVIOR  DERIVATION PROCESS
Axiom (I) Causality: The motion, temperature, 
electric field, and magnetic induction of the material 
points of a body are self-evident and observable in 
any thermoelectromechanical behavior of a body. The 
remaining quantities (other than those derivable from 
the motion, temperature, electric field, and magnetic 
induction) excluding the body force, energy supply, 
and free charge density that enter the balance laws 
and the entropy inequality, are the dependent 
variables.

Axiom (II)  Determinism: The value of any depen-
dent variable, at material point X of the body B at 
time t, is determined by the history of all material 
points of B.

Axiom (III)  Equipresence: At the outset, all 
constitutive response functionals are to be considered 
to depend on the same list of constitutive variables, 
until the contrary is deduced.

Axiom (IV) Objectivity: The constitutive response 
functionals are form-invariant under arbitrary rigid 
motions of the spatial frame of reference and a 
constant shift of the origin of time.

Axiom (V) Time Reversal: The entropy product-
ion must be nonnegative under time reversal. 

Axiom (VI) Material Invariance: The constitutive 
response functionals must be form-invariant with 
respect to a group of transformations of the material 
frame of reference {X ---> X } and "microscopic time 
reversal" as {t ---> -t } representing the material 
symmetry conditions. These transformations must 
leave the density and charge at  { X, t } unchanged. 

Axiom (VII)  Neighborhood: The values of the 
response functionals at X are not affected appreciably 
by the values of the independent constitutive 
variables at distant points from X. 

Axiom (VIII)  Memory: The values of the 
constitutive variables, at a distant past from the 
present, do not affect appreciably the values of the 
constitutive response functionals at present. 

Axiom (IX)  Admissibility: Constitutive equations 
must be consistent with the balance laws and the 
entropy inequality.
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MODELING A  MULTIPHYSICS SYSTEM

MAIN SCIENTIFIC CHALLENGES OF MODEL DRIVEN APPROACH
• Impossible Uncoupled Experiments for Coupling coefficients 

Determination?
EXAMPLE: Isotropic Nonlinear Electromagnetic Solids. Two of the 20 apriori

derived constitutive relations for the spatial vectors for heat and current 
define some of the known “effects”:

• Potentially NON TERMINATING
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MODELING A  MULTIPHYSICS SYSTEM

Data driven Modeling methodology

Consider state parameters

Define dependent &
independent variable sets

Add detail by employing 
conservation  laws

Generate constitutive laws
and field equations

Define BV problem for
given structure

Solve field equations

Evaluate & Display results
Simulate system response

Keep and Stop

Experimentally Collect
input/output pairs

Define relation between 
i/o pairs trough potential

function(s) with free coefficients

Construct & solve over-
determined system of equations
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QV&V Definitions

Intersecting definitions according to 
AIAA, DMSO, ASME, DOE/DP-ASCI

• Qualification: determination that a conceptual model 
implementation represents correctly a real physical 
system.

• Verification: determination that a computational model 
implementation represents correctly a conceptual model of 
the physical system.

• Validation: determination of the degree to which a 
computer model is an accurate representation of the real 
physical system from the perspective of the intended uses 
of the model.
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Model-Driven Approach for Q&VV
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General Optimization Approach
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SIMULATION
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Physical System
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Data-Driven Approach for Q&VV
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EPISTEMOLOGICAL BACKGROUND

Identify Observables

Collect Control and
Behavior Facts

Formulate Theory T to
represent these facts

inductively

Use T to predict
unobserved behavior with

certainty

Industrialized-Inductive
Scientific Method

Physical
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Conceptual
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predicted observation O
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(Popper)
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(Hempel)

false
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EXAMPLE: IONIC POLYMER COMPOSITE ARTIFICIAL MUSCLES
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Ionic Polymer Metal Composite (IPMC) Large Deflection Plates
Non-linear electro-elasto-dynamic field PDEs:

For Electric and Mechanical activation only
without mass transport:
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IPMC Large Deflection Plates: Parameter Identification

Multi-Objective Function Optimization
2 2 2

1 1 1
min ( ) min{ [ ( ) ] [ ( ) ] [ ( ) ] }

                      subject to constrains:   
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             ( ), ( ), ( ) are the simulated state variables at each point 
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j
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i
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t t r limits constraining each uknown j

To fully characterize ci we need a family of experiments 
that sweeps across boundary values of w, F, V and measures
them on a grid superimposed on the domain of the plate
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IPMC Large Deflection Plates: Experimental Results 
(M. Shahinpoor UNM)

Voltage, Displacement vs. Time of 
IPMC plate
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IPMC Large Deflection Plates: Biharmonic Single-Field Bases
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IPMC Large Deflection Plates: Comparison (1)

Deflection Time Histories in 3D carpet plots

EXPERIMENT COMPUTED
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IPMC Large Deflection Plates:  Comparison (2)

Deflection Time Histories in Contour plots

EXPERIMENT COMPUTED
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Conclusions

• Data driven models and simulations contain 
validation

• Model-driven models have epistemologic
origins

• When data exist “data-driven” is preferable 
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THANK YOU FOR YOUR ATTENTION
QUESTIONS?
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Data-Driven Approach: Example
Identify material from small specimens to predict behavior of large system

Data Driven Composite Materials & Structures WorkbenchData Driven Composite Materials & Structures Workbench
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MECHATRONICALLY AUTOMATED APPROACH: Overview

General Case:
3 displacements + 3 rotations + 3 forces + 3 moments + Np x 3 strains + Np x Nf = 12+ (3+Nf)xNp Datastreams
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Approach

Data driven methodology for PMCs: Data Collection

Hexcel Rd5129, (+/-15), path 2
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Approach
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Approach

Data driven methodology for PMCs: Data Reduction
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MECHATRONICALLY AUTOMATED APPROACH: Inverse  Model
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MECHATRONICALLY AUTOMATED APPROACH:Optimization
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MECHATRONICALLY AUTOMATED APPROACH:Simulation Synthesis

Pr. JGM 13

UTILIZATION OF BASIS LOADING  CASES RESPONSE THROUGH 
LINEAR COMBINATION OF RESULTING STRAIN FIELDS
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MECHATRONICALLY AUTOMATED APPROACH:Simulation Synthesis
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u2

(opening)

(bending)

(shearing)
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Approach

Data driven methodology for PMCs: Material Characterization

Specimen
Manufacturing

Specimen
Manufacturing

Material, Geometry,
Loading Spec.

Material, Geometry,
Loading Spec.

Strain Field
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Strain Field
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How - Approach
STRUCTURAL SYSTEM IDENTIFICATION-CHARACTERIZATION
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How - Approach:
GENERAL CONTINUOUM SYSTEMS MODELING

Data driven methodology for PMCs

AXIOMS OF ENRICHMENT

• All state variables are varying in a locally flat fashion both in space and time 
(continuity)

• The behavior of the whole structure is equivalent to the composition of the 
behaviors of structural discretization units (composition behavior)

• The observed behavior is repeatable when observed under identical conditions 
in various times (first order of reality)

ASSUMPTIONS

• Loading is either static or slowly varying
• The material behavior will be non-viscous, and independent of rate and load history
• The constitutive relation is continuous both in input and output variables
• Deformations are sufficiently small so that the infinitesimal stress and strain tensors may be 

employed
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MODELING A  MULTIPHYSICS SYSTEM

I O

mmnnmn

OIOI ℜ⊆ℜ⊆→ ,,:~  F Behavior Functional relating the output to 
the inputs of the system.

p r

0)~,~,~( =pq ξR Relational restriction over 
dependent, independent, 
parameter variables.

0,...)~ ,~( =

∂
∂

∇ℵ q
t

q m
m

n

i Composition Behavior through Conservation Law 
Relations: Dependence, of dependent variables on position in 
the structure, and time.

Structural
state

engine

   )~,~~~ pq ξ(C= Bulk Constitutive Relations:
Functional dependence, of dependent
variables on independent variables
and parameters.

Bulk
state

engine q

  ~ )~,~~~ εεξσ ⋅= (C

   )~,~ ~ ~ pq p ξ(Ξ∇= Vector Function Storage Mechanism:
Potential or Energy Density function.
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MODELING A  MULTIPHYSICS SYSTEM

Data driven Modeling methodology

   )~,~ ~ ~ pq p ξ(Ξ∇= Vector Function Storage Mechanism:
Potential or Energy Density function.

  )~,~  )~,~)~,~ ppp ξϕξξ ((( +Φ=Ξ Additivity of recoverable and non-recoverable 
components.

ppqp ~)~(~
2

1)~,~ ⋅=Φ ξ(

Recoverable energy definition.

))~(~,~(  ~~)~,~  xpcp ξχξϕ ⋅=(

Non-recoverable energy definition.
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Traditional vs. Data-Driven Approach of Q&VV
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Data-Driven System Identification and Simulation

Simulator

Physical system

System Model

Optimizer

Experimental
FRAME

System Model

Sensor or Design
FRAME
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