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Abstract. The task of providing an optimal analysis of the state of the
atmosphere requires the development of dynamic data-driven systems
(d3as) that efficiently integrate the observational data and the models.
In this paper we discuss fundamental aspects of nonlinear ensemble data
assimilation applied to atmospheric chemical transport models. We for-
mulate autoregressive models for the background errors and show how
these models are capable of capturing flow dependent correlations. To-
tal energy singular vectors describe the directions of maximum errors
growth and are used to initialize the ensembles. We highlight the chal-
lenges encountered in the computation of singular vectors in the presence
of stiff chemistry and propose solutions to overcome them. Results for a
large scale simulation of air pollution in East Asia illustrate the poten-
tial of nonlinear ensemble techniques to assimilate chemical observations.

Keywords: Dynamic data-driven applications and systems (d3as), data
assimilation, background covariance, ensemble Kalman filter, total en-
ergy singular vectors, autoregressive processes.

1 Introduction

Our ability to anticipate and manage changes in atmospheric pollutant con-
centrations relies on an accurate representation of the chemical state of the

� This work was supported by the National Science Foundation through the award
NSF ITR AP&IM 0205198 managed by Dr. Frederica Darema.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 648–655, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

@caltech.edu



Ensemble–Based Data Assimilation for Atmospheric CTMs 649

atmosphere. As our fundamental understanding of atmospheric chemistry ad-
vances, novel data assimilation tools are needed to integrate observational data
and models together to provide the best, physically consistent estimate of the
evolving chemical state of the atmosphere. Data assimilation is vital for meteoro-
logical forecasting and has started to be applied in chemical transport modeling
[7, 10, 20, 24].

In this paper we focus on the particular challenges that arise in the application
of nonlinear ensemble filter data assimilation to atmospheric chemical transport
models (CTMs). The distinguishing feature of CTMs is the presence of nonlinear
and stiff chemical interactions occurring at characteristic time scales that are
typically much shorter than the transport time scales. CTMs propagate the
model state forward in time from the “initial” state x(t0) to the “final” state
x(tF) (1). Perturbations (small errors) evolve according to the tangent linear
model (2) and adjoint variables according to the adjoint model (3):

x(tF) = Mt0→tF (x(t0)) (1)
δx(tF) = Mt0→tF δx(t0) (2)
λ(t0) = M∗

tF→t0λ(tF) . (3)

Here M, M , and M∗ denote the solution operators of the CTM, the tangent
linear, and the adjoint models respectively. The error covariance matrix evolves
from P (t0) to P (tF) according to

P (tF) = Mt0→tF P (t0)M∗
tF→t0 + Q , (4)

where Q is the covariance of the model errors.
Kalman filter techniques [16] provide a stochastic approach to the data as-

similation problem. The filtering theory is described in Jazwinski [15] and the
applications to atmospheric modeling in [6, 19]. The computational burden as-
sociated to the filtering process has prevented the implementation of the full
Kalman filter for large-scale transport-chemistry models. Ensemble Kalman fil-
ter techniques [8, 9, 13] may be used to facilitate the practical implementation
as shown by van Loon et al. [24].

In the ensemble implementation of the Kalman filter [9] the statistics are rep-
resented by the ensemble mean and covariance. These statistics depend strongly
on the background (initial) ensemble statistics x(t0) and P (t0). Since the proba-
bility density of the background state is not known exactly, it needs to be mod-
eled. Previous efforts to develop flow dependent background covariance models
are due to Riishojgaard [21], Hamill et al. [11], Houtekamer et. al. [14], and
Buehner et. al. [1].

This paper brings the following new elements:

1. The background errors are modeled using autoregressive processes. Such
models are computationally inexpensive and capture the error correlations
along the flow lines.

2. Total energy singular vectors (TESVs) are calculated for chemically reactive
flows. TESVs are the directions of maximum error growth over a finite time
interval.
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3. The above techniques are used to initialize the ensembles in a large scale
data assimilation problem.

The paper is organized as follows. Section 2 presents the background error
models and the calculation of TESVs. Section 3 illustrates the use of the tools
in a large scale data assimilation test, and Section 4 summarizes the results of
this research.

2 Construction of the Initial Ensemble

A good approximation of the background error statistics and a correct initializa-
tion of the ensemble are essential for the success of ensemble data assimilation.
In this section we consider autoregressive models for background errors and dis-
cuss the construction of TESVs. A more detailed discussion can be found in [5]
and [18].

2.1 Modeling the Background Errors

The background state xB is represented as the sum of the average state xB

plus an error (uncertainty) field δxB, xB = xB + δxB. The error field has zero
mean 〈δxB〉 = 0, and background covariance B = 〈δxB

(
δxB

)T 〉. Our basic
assumption is that the background state errors form a multilateral autoregressive
(AR) process [12] of the form

δxB
i,j,k = α±1δx

B
i±1,j,k + β±1δx

B
i,j±1,k + γ±1δx

B
i,j,k±1 + σi,j,k ξi,j,k . (5)

Here (i, j, k) are gridpoint indices on a 3 dimensional (structured) grid. The
model (5) captures the correlations among neighboring grid points, with α, β ,γ
representing the correlation coefficients in the x, y and z directions respectively.
The last term represents the additional uncertainty at each grid point, with
ξ ∈ N (0, 1) normal random variables and σ local error variances. The motivation
behind multilateral AR models is the fact that (5), – with proper coefficients –
can be regarded as a finite difference approximation of the advection-diffusion
equation.

The AR process (5) can be represented compactly as

Aδx = ξ . (6)

Note that A is a very sparse matrix. The background error covariance matrix is
B = A−1A−T , and the correlation matrix is D = diag(B)−1/2Bdiag(B)−1/2.

Constant correlation coefficients α, β, γ imply fixed spatial directional cor-
relation whereas variable coefficients may be used to capture flow dependent
correlations. In this paper we use the scaled wind speeds u, v, and w as correla-
tion coefficients. For example, the correlation coefficients in the x direction are
given by αi,j,k = ui,j,k/maxi,j,k(

√
u2

i,j,k + v2
i,j,k + w2

i,j,k). This approach leads
to very well conditioned covariance matrices B.
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To illustrate the autoregressive models we consider the wind fields over East
Asia on 0 GMT, March 1st, 2001, corresponding to the Trace-P field campaign
[3]. An autoregressive model (5) of background errors is constructed using flow
dependent coefficients (scaled wind velocities). Top views of the spatial cor-
relations of the resulting uncertainty fields are shown in Figure 1 for several
gridpoints located on the ground layer (a) and on the top layer (b). The cor-
relations match the shape and magnitude of the wind field. Note that the wind
speed near the ground is smaller than at the top and this is reflected by the
correlations.
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Fig. 1. Background error correlations for the Trace-P wind fields on March 1, 2001

2.2 Total Energy Singular Vectors

Total energy singular vectors (TESVs) are the directions of the most rapidly
growing perturbations over a finite time interval. We measure the magnitude of
the perturbations in the concentration fields using L2 (“energy”) norms. The
ratio between perturbation energies at the final (tF) and initial time (t0) offers
a measure of error growth:

σ2 =
‖δx(tF)‖2

B

‖δx(t0)‖2
A

=
〈δx(t0),M∗

tF→t0BMt0→tFδx(t0)〉
〈δx(t0), Aδx(t0)〉 (7)

Here A is a positive definite and B a positive semidefinite matrix. In (7) we
use the fact that perturbations evolve in time according to the dynamics of the
tangent linear model (2). TESVs are defined as the directions of maximal error
growth, i.e. the vectors sk(t0) that maximize the ratio σ2 in equation (7). These
directions are the solutions of the following generalized eigenvalue problem:

M∗
tF→t0 B Mt0→tF sk(t0) = σ2

k Ask(t0) (8)

The left side of (8) involves one integration with the tangent linear model followed
by one integration with the adjoint model.

The eigenvalue problem (8) is solved by software packages like ARPACK
[17] using Lanczos iterations. The symmetry of the matrix M∗ B M required by
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Lanczos imposes to use the discrete adjoint M∗ of the tangent linear operator M
in (8). The computation of discrete adjoints for stiff systems is a nontrivial task
[22]. In addition, computational errors (which can destroy symmetry) have to
be small. A considerable loss of symmetry during the stiff transient is observed
in practice [18]. This is due to the fact that the initial perturbations are away
from the slow (non-stiff) manifold. To correct this we apply the tangent linear
model on the initial perturbation for a short time, which is equivalent to “pro-
jecting” the initial perturbation onto the slow evolution manifold. In order to
preserve operator symmetry, another projection using the adjoint model needs
to be performed at the end of the adjoint integration. Consequently the matrix-
vector products are computed as w = Π∗M∗

tF→t0 B Mt0→tFΠ x, where Π and
Π∗ denote the projection operations performed with the tangent linear and the
adjoint models respectively.

3 Numerical Results

The numerical tests use the state-of-the-art regional atmospheric chemical trans-
port model STEM [3]. The simulation covers a region of 7200Km× 4800Km in
East Asia and uses a 30 × 20 × 18 computational grid with a horizontal resolu-
tion of 240Km×240Km. The chemical mechanism is a variant of SAPRC-99 [4]
and accounts for 93 different chemical species. The simulated conditions during
March 1st, 2001, correspond to the Trace-P [3]) field experiment.

We consider artificial observations generated every 6 hours by a reference
simulation starting at 0 GMT, March 1st, 2001. The observations are ground
level ozone (O3) concentrations at 24 gridpoints over Japan, Korea, and East
China. These grid points are referred to as the “target area” (the gray area in
Figure 2).

For the calculation of TESVs the final perturbation energy measures the
perturbations of (O3) and nitrogen dioxide (NO2) in the target area at the final
time. The perturbation norm at the initial time accounts for perturbations in all
chemical species, scaled by typical concentration values [18]. The O3 and NO2

sections of the dominant TESV are shown in Figure 2. We notice that dominant
TESV is localized near the target area, and that it is strongly correlated with
the adjoint variable corresponding to a similar target function.

The data assimilation process uses an ensemble with 50 members. The en-
semble is run for 6 hours in forecast mode, then is analyzed using the artificial
observations in the ensemble Kalman framework [9]. The assimilated ensemble
is then advanced in time for another 6 hours, then analyzed again, etc. until the
end of the 24 hours simulation interval.

Different initial perturbations are considered as follows. The first simulation
(“D”) uses an uncorrelated background. The initial perturbation is of the form
δxB = 30% xB · ξ, where ξ ∈ N (0, 1) and xB is the initial concentration vector.
The second simulation (“AR”) uses a flow dependent AR model for background
errors. The initial perturbation is δxB = A−1

(
30%xB · ξ), as described in sec-

tion 2. The third simulation (“AR+SV ”) adds perturbations along the largest 40
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Fig. 2. The dominant TESV (for ground level O3 concentration in the gray area) after

24 hours of evolution

TESVs to the flow dependent perturbations given by the autoregressive model.
The TESV perturbations undergo the maximum growth over a 24 hour inter-
val. Reducing uncertainty along these directions impacts the overall accuracy
improvements obtained through data assimilation.

Figure 3 shows the ensemble standard deviation at ground level at the initial
and final times using AR+SV background perturbations. Data assimilation leads
to a large decrease in the ensemble standard deviation after 24 hours.
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Fig. 3. Ensemble standard deviation at ground level with AR+SV background per-

turbations

The 24 hours time evolution of the ensemble O3 standard deviation over
the entire domain is shown in Figure 4(a), and over the target area in Figure
4(b). Different initial perturbations are considered with a diagonal correlation
(D), an autoregressive correlation (AR), and the superposition of autoregressive
and TESV perturbations (AR+SV ). NON denotes the non-assimilated ensemble
(initialized with AR+SV ). The first analysis (at 6 hours) has the highest impact
on the quality of the solution. Different ensembles perform differently under data
assimilation. The AR initialized ensemble gives slightly better solutions than the
D initialized one. The AR+SV ensemble performs best over the target area and
very well over the entire domain.
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Fig. 4. Time evolution of the ensemble standard deviation for different initial pertur-

bations: diagonal correlation (D), autoregressive correlation (AR), and the superpo-

sition of autoregressive and TESV perturbations (AR+SV ). NON denotes the non-

assimilated ensemble (initialized with AR+SV ). All other ensembles are analyzed every

6 hours using O3 ground level observations in the target area

4 Conclusions

This paper discusses some of the challenges associated with the application of
nonlinear ensemble filtering data assimilation to atmospheric chemical trans-
port models. The distinguishing feature of these models is the presence of non-
linear and stiff chemical interactions occurring at very short characteristic time
scales.

A correct initialization of the ensemble is necessary for a successful applica-
tion of nonlinear filtering data assimilation. We propose to model background
errors using multilateral autoregressive processes. Such models are computa-
tionally inexpensive and capture well the error correlations along the flow lines.
Total energy singular vectors are calculated for chemically reactive flows. A dual
projection technique (with the tangent linear and with the adjoint models) is
proposed to keep the linearized solutions on the slow manifold and preserve the
symmetry of the chemistry tangent linear – adjoint operators.

The data assimilation test problem considered here is based on a large scale
simulation of air pollution in East Asia in March 2001. The ensembles are initial-
ized using autoregressive models of background errors and total energy singular
vectors. The superposition of these two types of initial perturbations leads to an
ensemble that performs very well both over the target area and over the entire
computational domain.
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