
Dynamic Data Driven Methodologies for
Multiphysics System Modeling and Simulation

J. Michopoulos1, C. Farhat2, E. Houstis3,4, P. Tsompanopoulou4,
H. Zhang3, and T. Gullaud2

1 Code 6390, Special Projects Group, U.S. Naval Research Laboratory, U.S.A
john.michopoulos@nrl.navy.mil

2 Dept. of Mechanical Engineering, Stanford University, U.S.A
{cfarhat, tgullaud}@stanford.edu

3 Computer Sciences Dept. & Electrical and Computer Engineering Dept., Purdue
University, U.S.A

{enh, hzhang}@purdue.edu
4 Dept. of Comp. Eng. and Telecommunications, University of Thessaly, Greece

{enh, yota}@uth.gr

Abstract. We are presenting a progress overview associated with our
work on a data-driven environment for multiphysics applications (DDEMA).
In this paper, we emphasize the dynamic-data-driven adaptive mod-
eling and simulation aspects. Adaptive simulation examples of sensor-
originating data-driven precomputed solution synthesis are given for two
applications. Finally, some of the computational implementation details
are presented.

1 Introduction

Our project has been focusing on developing methodologies and corresponding
technologies, for utilizing dynamic data to generate adaptive behavioral models
of physical systems as well as facilitate their realistic and near real time behavior
simulation. Of particular interest here are systems that are excited by multi-field
conditions and often require multi-domain modeling from a continuum systems
perspective. Characteristic examples of such systems are fire dynamics simula-
tion as well as material softening trends as a function of flight conditions of a
supersonic aircraft for prediction of future behavior as detected by sensor origi-
nating data-streams.

This paper presents an overview of some of the recent progress associated
with our project on adaptive modeling and simulation for supersonic aircraft re-
sponse prediction for structural design, material qualification/certification needs,
and fire dynamics propagation applications relevant to crisis management and
decision support for first responders. It also describes the predominant features
of the computational implementations. Previous progress on the project can be
found elsewhere [1, 2, 3].
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2 Adaptive Constitutive Modeling of Composites

The concept of “data-driven system modeling” has been frequently identified
by the majority of research community as the process of system identification.
Various techniques exist to utilize data representing discrete values of systemic
behavioral parameters (inputs/outputs) as they occur from exercising the phys-
ical system (i.e. through systematic experimentation or real time monitoring) to
determine free coefficients/constants involved in the analytical (i.e. mathemat-
ical) or/and computational model of the physical system at hand. Design opti-
mization involving objective function minimization is arguably the most popular
among these techniques.

The concept of “dynamic-data-driven modeling” is an extension of the “data-
driven modeling” in that it attempts to identify a system that may or may not be
changing itself at real-time. In this case, the model is being formed or determined
just prior to being used based on the dynamic data.

In the context of the systems associated with DDEMA we are interested
in adaptively and dynamically constructing the appropriate models. We have
identified two general meanings behind the term “adaptive modeling” as it has
been used by various investigators. The most frequent one refers to selecting a
fixed analytical representation for the model and then use the incoming dynamic
data to determine the free coefficients and/or parameters associated with it. It is
anticipated that as more and more data are coming in the model’s identification
process the model itself is adapting through the re-computation of the unknown
coefficients/parameters till the data are exhausted or the model reaches its fixed
point (if it exists). We call this type of adaptive modeling the “static in-line
modeling” (SILM) type. However, there is a possibility that the system changes
its behavior very drastically and the SILM approach does not reach fixed point
nor it can reproduce older data but only recent data. This is the case for strongly
non-linear systems that can be approximated by various models that can be
captured by either physics aware or physics-agnostic representations [7]. This
case calls for the existence of a meta-level modeling infrastructure that can select
representations adapted to the data and will be designated as “dynamic meta
modeling” (DMM). Clearly for each area of applicability DMM selects a model
that still has to be identified by SILM. DMM is not a widely known approach
especially because its computational and implementation cost and complexity.

We have initiated the extension of NRL’s traditional SILM approach for
characterizing or identifying the multi-field constitutive response of composites
under mechanical and heat flux loading, to a DMM approach by appropriate
modification of our mechatronic automation methodology [7]. Composite mate-
rial characterization under thermal and mechanical loading is essential for the
application area where DDEMA will be validated for the case of aircraft mod-
eling activity. The appropriate design scenario involves mechanical pressure and
heat fluxes that are applied on aircraft skins due to the structure-fluid inter-
action induced by supersonic flight conditions. The specific approach is based
in extending the notion of dissipated energy density (DED). DED is the func-
tion that is traditionally constructed as a sum of basis functions weighted by
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unknown coefficients to be determined trough the identification process from
mechatronically derived experimental data [7]. These coefficients represent the
material model parameters and the procedure to identify them has always as-
sumed isothermal and adiabatic conditions for the material under identification.
However, the co-existence of aerodynamically induced heat fluxes has forced re-
consideration of the isothermal and adiabatic assumptions for the identification
process. There are multiple ways to account for a material that represents an
open system that can exchange heat with its environment. Allowing tempera-
ture to be a state variable of the DED function of the system in addition to
the strain components, is one of them. Another possible extension is to allow
the parameters of the isothermal model to become functions of temperature
themselves. Many other extensions can be constructed by considering varying
combinations of both of the previous extensions. These extensions constitute the
template domain for the DMM approach. A meta-optimization scheme outside
each individual SLIM can select the best one of all these extensions and is the
embodiment of the DMM methodology that will be further developed.

3 Dynamic Data Driven Adaptive Simulation

To enable and improve dynamic data driven adaptivity of systemic behavioral
simulation with real-time performance, the analytical and computational com-
plexity of the models involved requires that techniques and methodologies are
developed and employed to accelerate computation. It is essential that incoming
data originating from sensors associated with the actual physical systems are
utilized to exercise their models in a manner that achieves this objective.

An extended description of the techniques available for reducing model com-
plexity through reduced order modeling, and for reducing total computation
time by implementing combined computational parallelism based in domain de-
composition techniques in both space and time has been given elsewhere [4, 5, 6].

Here we are focusing on sensor-originating data-driven solution synthesis from
pre-existing basis cases behavioral simulations.

Let ri represent a scalar field corresponding to a response component of
the behavior of a continuous system indexed by the position index i usually
corresponding to some nodal identification address as it relates to a mesh used
for determining it numerically. The context of this response component includes
the existence of some analytical model (i.e. set of partial differential equations),
some discretization scheme (i.e. using finite element/volume analysis over an
appropriately selected mesh) that when applied yields the values of all output
state variables of the system (i.e. temperature, strain components, concentrations
etc.) as a column array r containing its values ri where i = 1, . . . ,m for all
mesh points m. It is assumed that there is a column vector f , of n global input
parameters fj , j = 1, . . . , n, regarded as the forcing or loading inputs into our
systemic simulation model in a manner that potentially effects all ri at every i
point. To obtain the base case solutions bj , we apply the solution scheme for
our system’s of PDE-based model n times for each one of the forcing inputs by
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setting fj = 1 for each forcing function. We further postulate as in [8], that there
is an appropriate selection of forcing input parameters such as any response of
the system can always be expressed as a linear combination of this base case
solutions, according to,

r = Bc, (1)

where B is the rectangular n × m array constructed such as B = [b1(f1),
· · · ,bn(fn)] that has elements defined by Bij = bi(fj), and c is an n-dimensional
column array containing the proportion coefficients cj multiplying each one of
the base cases to construct the final solution.

It is important to recognize that B can be computed prior to its utilization
from Eq. 1 at the time of of solution synthesis for real-time simulation. In fact,
the final behavioral solution synthesis is achieved by the computational imple-
mentation of Eq. 1 provided c is known.

Determination of c can be achieved via the use of q sensors embedded in the
physical system at positions k that can be selected to coincide with some of the
points i and they measure the sensor response column vector s that contains
individual sensor responses sl, l = 1, . . . , q. Since sl essentially is rl at the point
where a sensor exists, and without loss of generality we assume noiseless sensors,
then we can repeat the previously applied argumentation and approximate the
sensor response according to

s = Qc. (2)

Q represents a limited version of B such that only the points on the mesh where
sensors are located are considered. Thus Q is an n× q rectangular array. Clearly
for any case where n ≤ q (i.e. base cases are less than the number of available
sensors), there is a pseudo inverse Q+ of Q, such that Eq. 2 can be inverted to
determine c and subsequently inserted in Eq. 1 to yield

r = BQ+s. (3)

This relation allows to compose the response of the system in terms of pre-
computed and stored solutions (i.e. B and Q and their product) and sensor
originating data (i.e. s). In this manner, we avoid spending the time for re-
applying the PDE solution scheme that involves time-consuming computational
application of space and time integration (we only do this for the base cases), and
substitute it to much more computationally efficient sequences of multiplications
and additions as defined by the computational implementation of the matrix
operations designated by Eq. 3. It is also worthwhile mentioning here that the
solutions represented by B may be constructed in terms of reduced order models
to further accelerate total computation time for both the pre-computing and
real-time stages of the process.

Application 1: Aircraft Behavior Prediction. We have initiated work for
applying the pre-computed synthesis approach described for the case of subsonic
to supersonic regime of the AGARD wing 445.6 [9]. This wing is an AGARD
standard aeroelastic configuration with a 45 degrees quarter-chord sweep angle,
a panel aspect ratio of 1.65, a taper ratio of 0.66, and a NACA 65A004 airfoil



620 J. Michopoulos et al.

section. In our previous work [10] we have modeled and solved the three-field
PDE system governing fluid-structure aeroelastic response of this wing and have
established favorable comparisons with experimental results. Results for vari-
ous state variables have been obtained for various flight conditions defined by
an appropriate variation of the far-field mach number (denoting the speed of
the corresponding aircraft) and angle of attack. These two parameters are also
selected as the forcing input parameters for our system.

To apply the above mentioned scheme, we have selected the total strain en-
ergy density (SED) per unit of volume, as the behavioral response state variable
of choice. In addition, we assumed the presence of 4 sensors that can measure
in-plain strains on specific places of the wing. We focused on small region of
the parameter space defined by (M∞ ∈ [0.6, 0.8], α ∈ [6o, 8o]), in order to allow
proportional superposition as it is enforced by the composition equations.

Figure 1 shows nine SED distributions of the AGARD wing resulting for
3 values of M∞ and α respectively. All cases surrounded by dash-lined frames
have been both synthesized and computed from the direct solution procedure.
Differences between synthesized and direct SED distributions never exceeded 4.2
% root mean square error. The red dots shown in the case of (M∞, α) = (0.6, 6o)
represent the location of the sensors.

Fig. 1. Strain energy density distributions of the AGARD wing. All distributions along

M∞ = 0.7 and α = 7o have been both computed and reconstructed and the differences

are undiscernible

Direct computation of any of these solutions took an average of 19.6 minutes
on six processors of a SGI Origin 2000. It is indicative that solution synthesis of
the same case implemented as a GAWK script running on a 3.2 GHz Pentium-4
processor takes 0.6 seconds. Thus a realization of 1960 times speedup is achieved
(without adjusting for the different processor unit number and architecture).
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Application 2: Fire Dynamics Behavior Prediction. Application of the
solution synthesis approach based on dynamic sensor data requires the estab-
lishment the base case parameter space. The problem of fuel leak at room inside
a submarine has been selected to represent the physical context for this case.
“Fire Dynamic Simulator” (FDS) /citeFDS01 has been selected to numerically
integrate the corresponding reactive flow PDE-model.

We have selected a rectangular 5 × 3 array of 15 thermocouple sensors that
measure temperature. We have chosen the excitation parameters for constructing
our base cases to be: total time combustion is ongoing (tc in seconds); position-X
of leak (fx in meters); position-Y of leak (fy in meters); fuel’s Heat Release Rate
Per Unit Area to designate the fire strength (fs in kW/m2). They define a four
dimensional parameter space and in particular a bounded sub-region defined by
{tc ∈ [0., 10.], fx ∈ [0., 4.7], fx ∈ [0., 2.5], fs ∈ [100., 500.]}.

Fig. 2. Temperature distribution along x-axis at the mid section of a submarine room

with a fuel leak. All the distributions for tc = 70 sec and fx = 2.46 m have been both

computed and reconstructed and the differences are undiscernible

While the average time for all FDS-computed cases was 13.4 minutes on a
3.2 GHz Pentium 4 system, the synthesized solutions took 1.6 seconds on the
same system. Therefore the average speedup factor was 817. It should be noted
that the synthesized runs in addition to the actual computation include the data
input and output time.

4 Computational Implementation Progress

Progress regarding the computational implementation of DDEMA is reported
for the cases that follow.
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Supersonic Platform Simulation: The core technology behind the aircraft
multiphysics simulations for our project is the AERO suite of codes [12]. To pro-
vide Operating System and system architecture transparency along with ease of
use we have developed a JAVA-based front-end called JAERO. JAERO is a full
JAVA stand-alone application that runs on the local client machine in front of
the user and provides automated configuration, data integrity, dependency and
consistency checking, file management, execution control and monitoring man-
agement services to the AERO suite installed on a remote cluster. JAERO does
not enforce continuous master-slave relationship to the AERO suite executables
and furthermore it provides job monitoring services at will. State storage and
recovery has been enabled by utilization of XML-based file encoding, storage
and recovery. It does not require HTTPD server presence since it exploits SSH
client-server daemon based multi-threaded communications. RSA fingerprints
are used for host authentication and encryption has been implemented for all
data transmitted over the network. XML scripting of a full runtime session of
AERO that encapsulates all the inter-code parametrization, data file location,
cluster e.t.c is also provided and it will eventually provide extended availability
to 3rd parties. JAERO is currently undergoing beta testing and is be extended
to support data visualization post-processing.

Fire Dynamics Simulation: The core technology behind the reactive flow
modeling and simulation for fire dynamics prediction applications, is the FDS
legacy code. To enable lightweight parallelism capability on distributed heteroge-
neous networked systems, and Operating System and system architecture trans-
parency along with ease of use, we have developed JAMPI. JAMPI is a set of
resources for “J”ava “A”gent enabling of the “M”essage “P”assing “I”nterface
for legacy MPI-based codes. In particular, we used JAMPI to develop the Java
Fire Dynamic Simulator (JFDS) that resulted in converting the MPI version
of FDS into a JADE /cite agent implementation of it. This approach enables
instances of legacy codes installed on various shared memory architectures, to
appear as light-weight agents accessing the codes directly or their corresponding
GRID or WEB services encapsulation. Therefore, all benefits of using agent-
based middleware are automatically realizable for legacy codes in general and
for FDS in particular.

JAMPI is in alpha stage while JFDS is in beta testing stage and we are cur-
rently undergoing through validation procedures along with performance analy-
sis and comparison studies.
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